Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David R. Mount is active.

Publication


Featured researches published by David R. Mount.


Environmental Toxicology and Chemistry | 2010

Adverse outcome pathways: A conceptual framework to support ecotoxicology research and risk assessment

Gerald T. Ankley; Richard S. Bennett; Russell J. Erickson; Dale J. Hoff; Michael W. Hornung; Rodney D. Johnson; David R. Mount; John W. Nichols; Christine L. Russom; Patricia K. Schmieder; Jose A. Serrrano; Joseph E. Tietge; Daniel L. Villeneuve

Ecological risk assessors face increasing demands to assess more chemicals, with greater speed and accuracy, and to do so using fewer resources and experimental animals. New approaches in biological and computational sciences may be able to generate mechanistic information that could help in meeting these challenges. However, to use mechanistic data to support chemical assessments, there is a need for effective translation of this information into endpoints meaningful to ecological risk-effects on survival, development, and reproduction in individual organisms and, by extension, impacts on populations. Here we discuss a framework designed for this purpose, the adverse outcome pathway (AOP). An AOP is a conceptual construct that portrays existing knowledge concerning the linkage between a direct molecular initiating event and an adverse outcome at a biological level of organization relevant to risk assessment. The practical utility of AOPs for ecological risk assessment of chemicals is illustrated using five case examples. The examples demonstrate how the AOP concept can focus toxicity testing in terms of species and endpoint selection, enhance across-chemical extrapolation, and support prediction of mixture effects. The examples also show how AOPs facilitate use of molecular or biochemical endpoints (sometimes referred to as biomarkers) for forecasting chemical impacts on individuals and populations. In the concluding sections of the paper, we discuss how AOPs can help to guide research that supports chemical risk assessments and advocate for the incorporation of this approach into a broader systems biology framework.


Journal of Great Lakes Research | 1996

Calculation and Evaluation of Sediment Effect Concentrations for the Amphipod Hyalella azteca and the Midge Chironomus riparius

Christopher G. Ingersoll; Pamela S. Haverland; Eric L. Brunson; Timothy J. Canfield; F. James Dwyer; Christopher E. Henke; Nile E. Kemble; David R. Mount; Richard G. Fox

Abstract Procedures are described for calculating and evaluating sediment effect concentrations (SECs) using laboratory data on the toxicity of contaminants associated with field-collected sediment to the amphipod Hyalella azteca and the midge Chironomus riparius . SECs are defined as the concentrations of individual contaminants in sediment below which toxicity is rarely observed and above which toxicity is frequently observed. The objective of the present study was to develop SECs to classify toxicity data for Great Lake sediment samples tested with Hyalella azteca and Chironomus riparius . This SEC database included samples from additional sites across the United States in order to make the database as robust as possible. Three types of SECs were calculated from these data: (1) Effect Range Low (ERL) and Effect Range Median (ERM), (2) Threshold Effect Level (TEL) and Probable Effect Level (PEL), and (3) No Effect Concentration (NEC). We were able to calculate SECs primarily for total metals, simultaneously extracted metals, polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs). The ranges of concentrations in sediment were too narrow in our database to adequately evaluate SECs for butyltins, methyl mercury, polychlorinated dioxins and furans, or chlorinated pesticides. About 60 to 80% of the sediment samples in the database are correctly classified as toxic or not toxic depending on type of SEC evaluated. ERMs and ERLs are generally as reliable as paired PELs and TELs at classifying both toxic and non-toxic samples in our database. Reliability of the SECs in terms of correctly classifying sediment samples is similar between ERMs and NECs; however, ERMs minimize Type I error (false positives) relative to ERLs and minimize Type II error (false negatives) relative to NECs. Correct classification of samples can be improved by using only the most reliable individual SECs for chemicals (i.e., those with a higher percentage of correct classification). SECs calculated using sediment concentrations normalized to total organic carbon (TOC) concentrations did not improve the reliability compared to SECs calculated using dry-weight concentrations. The range of TOC concentrations in our database was relatively narrow compared to the ranges of contaminant concentrations. Therefore, normalizing dry-weight concentrations to a relatively narrow range of TOC concentrations had little influence on relative concentra of contaminants among samples. When SECs are used to conduct a preliminary screening to predict the potential for toxicity in the absence of actual toxicity testing, a low number of SEC exceedances should be used to minimize the potential for false negatives; however, the risk of accepting higher false positives is increased.


Journal of Great Lakes Research | 1996

Assessing Contamination in Great Lakes Sediments Using Benthic Invertebrate Communities and the Sediment Quality Triad Approach

Timothy J. Canfield; F. James Dwyer; James F. Fairchild; Pamela S. Haverland; Christopher G. Ingersoll; Nile E. Kemble; David R. Mount; Thomas W. La Point; G. Allen Burton; M.C. Swift

Abstract Sediments in many Great Lakes harbors and tributary rivers are contaminated. As part of the USEPAs Assessment and Remediation of Contaminated Sediment (ARCS) program, a number of studies were conducted to determine the nature and extent of sediment contamination in Great Lakes Areas of Concern (AOC). This paper describes the composition of benthic invertebrate communities in contaminated sediments and is one in a series of papers describing studies conducted to evaluate sediment toxicity from three AOCs (Buffalo River, NY; Indiana Harbor, IN; Saginaw River, MI), as part of the ARCS Program. Oligochaeta (worms) and Chironomidae (midge) comprised over 90% of the benthic invertebrate numbers in samples collected from depositional areas. Worms and midge consisted of taxa identified as primarily contaminant tolerant organisms. Structural deformities of mouthparts in midge larvae were pronounced in many of the samples. Good concurrence was evident between measures of laboratory toxicity, sediment contaminant concentration, and benthic invertebrate community composition in extremely contaminated samples. However, in moderately contaminated samples, less concordance was observed between the benthos community composition and either laboratory toxicity test results or sediment contaminant concentration. Laboratory sediment toxicity tests may better identify chemical contamination in sediments than many commonly used measures of benthic invertebrate community composition. Benthic measures may also reflect other factors such as habitat alteration. Evaluation of non-contaminant factors are needed to better interpret the response of benthic invertebrates to sediment contamination.


Environmental Toxicology and Chemistry | 2013

Mechanistic sediment quality guidelines based on contaminant bioavailability: Equilibrium partitioning sediment benchmarks

Robert M. Burgess; Walter J. Berry; David R. Mount; Dominic M. Di Toro

Globally, estimated costs to manage (i.e., remediate and monitor) contaminated sediments are in the billions of U.S. dollars. Biologically based approaches for assessing the contaminated sediments which pose the greatest ecological risk range from toxicity testing to benthic community analysis. In addition, chemically based sediment quality guidelines (SQGs) provide a relatively inexpensive line of evidence for supporting these assessments. The present study summarizes a mechanistic SQG based on equilibrium partitioning (EqP), which uses the dissolved concentrations of contaminants in sediment interstitial waters as a surrogate for bioavailable contaminant concentrations. The EqP-based mechanistic SQGs are called equilibrium partitioning sediment benchmarks (ESBs). Sediment concentrations less than or equal to the ESB values are not expected to result in adverse effects and benthic organisms should be protected, while sediment concentrations above the ESB values may result in adverse effects to benthic organisms. In the present study, ESB values are reported for 34 polycyclic aromatic hydrocarbon, 32 other organic contaminants, and seven metals (cadmium, chromium, copper, nickel, lead, silver, zinc). Also included is an overview of EqP theory, ESB derivation, examples of applying ESB values, and considerations when using ESBs. The ESBs are intended as a complement to existing sediment-assessment tools, to assist in determining the extent of sediment contamination, to help identify chemicals causing toxicity, and to serve as targets for pollutant loading control measures.


Environmental Toxicology and Chemistry | 2012

Comparison of nanosilver and ionic silver toxicity in Daphnia magna and Pimephales promelas

Sarah M. Hoheisel; Steve Diamond; David R. Mount

The increasing use of nanosilver in consumer products and the likelihood of environmental exposure warrant investigation into the toxicity of nanosilver to aquatic organisms. A series of studies were conducted comparing the potency of nanosilver to ionic silver (Ag(+)) at acute and sublethal levels using two test organisms (Daphnia magna and Pimephales promelas). The 48-h D. magna median lethal concentration (LC50) of multiple sizes (10, 20, 30, and 50 nm) of commercially prepared nanosilver (nanoComposix) ranged from 4.31 to 30.36 µg total Ag L(-1) with increasing toxicity associated with decreasing particle size. A strong relationship between estimated specific particle surface area and acute toxicity was observed. Nanosilver suspensions (10 nm) treated with cation exchange resin to reduce the concentration of Ag(+) associated with it were approximately equally toxic to D. magna compared to untreated nanosilver (48-h LC50s were 2.15 and 2.79 µg total Ag L(-1), respectively). The 96-h LC50 and 7-d sublethal 20% effective concentrations (EC20s) for P. promelas were 89.4 and 46.1 µg total Ag L(-1), respectively, for 10 nm nanosilver and 4.70 and 1.37 µg total Ag L(-1), respectively, for Ag(+); the resulting ratios of 96-h LC50 to 7-d EC20 were not significantly different for nanosilver and ionic silver. Overall, these studies did not provide strong evidence that nanosilver either acts by a different mechanism of toxicity than ionic silver, or is likely to cause acute or lethal toxicity beyond that which would be predicted by mass concentration of total silver. This in turn suggests that regulatory approaches based on the toxicity of ionic silver to aquatic life would not be underprotective for environmental releases of nanosilver.


Water Research | 2000

Use of toxicity identification evaluation methods to characterize, identify, and confirm hexavalent chromium toxicity in an industrial effluent

David R. Mount; J. Russell Hockett

Abstract A toxicity identification evaluation (TIE) was conducted on effluent from a major industrial discharger. Although initial monitoring typically showed only slight, intermittent, chronic toxicity to Ceriodaphnia dubia, a later sample showed substantial acute toxicity to C. dubia (48-h lc 50=9%). Acute phase I toxicity characterization tests were conducted on this acutely toxic sample; none of the phase I manipulations reduced sample toxicity. The toxic effluent sample was then treated with activated carbon, and cation, anion, and mixed-bed ion exchange. Acute toxicity was not reduced by treatment with activated carbon or cation exchange, but was completely removed by anion and mixed-bed ion exchange. Based on these data, we concluded that the causative toxicant(s) was likely an inorganic anion(s); chemical analysis detected hexavalent chromium (Cr[VI]) at concentrations sufficient to account for the observed acute toxicity. Although Cr[VI] could clearly explain the presence of acute toxicity, subsequent confirmation testing was designed to determine whether Cr[IV] was responsible for the low-level chronic toxicity more typical of the effluent. Concurrent chronic tests conducted on unaltered and anion-exchanged effluent showed that the presence of chronic toxicity was associated with chronically toxic concentrations of Cr[VI]. The source of Cr[VI] in the effluent was traced to a malfunctioning heat exchanger; after this malfunction was corrected, neither chronic toxicity nor appreciable Cr[VI] was observed in the effluent again.


Environmental Toxicology and Chemistry | 2001

An assessment of the toxicity of phthalate esters to freshwater benthos. 2. Sediment exposures

Daniel J. Call; Thomas P. Markee; Dianne L. Geiger; Larry T. Brooke; Fred A. VandeVenter; Dean A. Cox; Kristen I. Genisot; Kenneth A. Robillard; Joseph W. Gorsuch; Thomas F. Parkerton; Mary C. Reiley; Gerald T. Ankley; David R. Mount

Tests were performed with the freshwater invertebrates Hyalella azteca, Chironomus tentans, and Lumbriculus variegatus to determine the acute toxicity of six phthalate esters, including dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DBP), butylbenzyl phthalate (BBP), di-n-hexyl phthalate (DHP), and di-2-ethylhexyl phthalate (DEHP). It was possible to derive 10-d LC50 (lethal concentration for 50% of the population) values only for the four lower molecular weight esters (DMP, DEP, DBP, and BBP), for which toxicity increased with increasing octanol-water partition coefficient (Kow) and decreasing water solubility. The LC50 values for DMP, DEP, DBP, and BBP were 28.1, 4.21, 0.63, and 0.46 mg/L for H. azteca; 68.2, 31.0, 2.64, and > 1.76 mg/L for C. tentans; and 246, 102, 2.48, and 1.23 mg/L for L. variegatus, respectively. No significant survival reductions were observed when the three species were exposed to either DHP or DEHP at concentrations approximating their water solubilities.


Environmental Toxicology and Chemistry | 2007

Sensitivity of mottled sculpins (Cottus bairdi) and rainbow trout (Onchorhynchus mykiss) to acute and chronic toxicity of cadmium, copper, and zinc

John M. Besser; Christopher A. Mebane; David R. Mount; Chris D. Ivey; James L. Kunz; I. Eugene Greer; Thomas W. May; Christopher G. Ingersoll

Studies of fish communities of streams draining mining areas suggest that sculpins (Cottus spp.) may be more sensitive than salmonids to adverse effects of metals. We compared the toxicity of zinc, copper, and cadmium to mottled sculpin (C. bairdi) and rainbow trout (Onchorhynchus mykiss) in laboratory toxicity tests. Acute (96-h) and early life-stage chronic (21- or 28-d) toxicity tests were conducted with rainbow trout and with mottled sculpins from populations in Minnesota and Missouri, USA, in diluted well water (hardness = 100 mg/L as CaCO3). Acute and chronic toxicity of metals to newly hatched and swim-up stages of mottled sculpins differed between the two source populations. Differences between populations were greatest for copper, with chronic toxicity values (ChV = geometric mean of lowest-observed-effect concentration and no-observed-effect concentration) of 4.4 microg/L for Missouri sculpins and 37 microg/L for Minnesota sculpins. Cadmium toxicity followed a similar trend, but differences between sculpin populations were less marked, with ChVs of 1.1 microg/L (Missouri) and 1.9 microg/L (Minnesota). Conversely, zinc was more toxic to Minnesota sculpins (ChV = 75 microg/L) than Missouri sculpins (chronic ChV = 219 microg/L). Species-average acute and chronic toxicity values for mottled sculpins were similar to or lower than those for rainbow trout and indicated that mottled sculpins were among the most sensitive aquatic species to toxicity of all three metals. Our results indicate that current acute and chronic water quality criteria for cadmium, copper, and zinc adequately protect rainbow trout but may not adequately protect some populations of mottled sculpins. Proposed water quality criteria for copper based on the biotic ligand model would be protective of both sculpin populations tested.


Integrated Environmental Assessment and Management | 2011

Application of the tissue residue approach in ecological risk assessment

Keith Sappington; Todd S. Bridges; Steven P. Bradbury; Russell J. Erickson; A. Jan Hendriks; Roman P. Lanno; James P. Meador; David R. Mount; Mike H Salazar; Doug Spry

The objective of this work is to present a critical review of the application of the tissue residue approach (TRA) in ecological risk and/or impact assessment (ERA) of chemical stressors and environmental criteria development. A secondary goal is to develop a framework for integrating the TRA into ecological assessments along with traditional, exposure concentration-based assessment approaches. Although widely recognized for its toxicological appeal, the utility of the TRA in specific applications will depend on numerous factors, such as chemical properties, exposure characteristics, assessment type, availability of tissue residue-response data, and ability to quantify chemical exposure. Therefore, the decision to use the TRA should include an evaluation of the relative strengths, limitations, and uncertainties among exposure and residue-based methods for characterizing toxicological effects. Furthermore, rather than supplanting exposure concentration-based toxicity assessments, the TRA can be highly effective for evaluating and reducing uncertainty when used in a complementary manner (e.g., when evaluating multiple lines of evidence in field studies). To address limitations with the available tissue residue-response data, approaches for extrapolating residue-based toxicity data across species, tissues, and exposure durations are discussed. Some of these approaches rely on predicted residue-response relationships or toxicological models that have an implicit residue-response basis (e.g., biotic ligand model). Because risk to an organism is a function of both its exposure potential and inherent sensitivity (i.e., on a residue basis), bioaccumulation models will be required not only for translating tissue residue criteria into corresponding water and sediment criteria, but also for defining the most vulnerable species in an assemblage (i.e., highly exposed and highly sensitive species). Application of the TRA in ecological assessments and criteria development are summarized for bioaccumulative organic chemicals, TBT, and in situ bioassays using bivalve molluscs.


Environmental Toxicology and Chemistry | 2006

Use of the oligochaete, Lumbriculus variegatus, as a prey organism for toxicant exposure of fish through the diet

David R. Mount; Terry L. Highland; Vincent R. Mattson; Timothy D. Dawson; Kevin G. Lott; Christopher G. Ingersoll

The oligochaete, Lumbriculus variegatus, has several characteristics that make it desirable as a prey organism for conducting dietary exposure studies with fish. We conducted 21- and 30-d experiments with young fathead minnows (Pimephales promelas) and rainbow trout (Oncorhynchus mykiss), respectively, to determine whether a diet consisting solely of L. variegatus would support normal growth and to compare performance with standard diets (Artemia nauplii, frozen brine shrimp, or trout chow). All diets were readily accepted, and fish survived and grew well. Food conversion in both fathead minnows and rainbow trout was as high as or higher for the oligochaete diet compared with others, although this comparison is influenced by differences in ration, ingestion rate, or both. The oligochaete diet had gross nutritional analysis similar to the other diets, and meets fish nutrition guidelines for protein and essential amino acids. Methodologies and practical considerations for successfully using oligochaetes as an experimental diet are discussed. Considering their ready acceptance by fish, their apparent nutritional sufficiency, the ease of culturing large numbers, and the ease with which they can be loaded with exogenous chemicals, we believe that L. variegatus represents an excellent choice of exposure vector for exposing fish to toxicants via the diet.

Collaboration


Dive into the David R. Mount's collaboration.

Top Co-Authors

Avatar

Gerald T. Ankley

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

J. Russell Hockett

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Christopher G. Ingersoll

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Terry L. Highland

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Russell J. Erickson

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Lawrence P. Burkhard

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Teresa J. Norberg-King

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Dale J. Hoff

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Edward N. Leonard

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Vincent R. Mattson

United States Environmental Protection Agency

View shared research outputs
Researchain Logo
Decentralizing Knowledge