Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David R. Roberts is active.

Publication


Featured researches published by David R. Roberts.


Global Change Biology | 2015

Velocity of climate change algorithms for guiding conservation and management.

Andreas Hamann; David R. Roberts; Quinn E. Barber; Carlos Carroll; Scott E. Nielsen

The velocity of climate change is an elegant analytical concept that can be used to evaluate the exposure of organisms to climate change. In essence, one divides the rate of climate change by the rate of spatial climate variability to obtain a speed at which species must migrate over the surface of the earth to maintain constant climate conditions. However, to apply the algorithm for conservation and management purposes, additional information is needed to improve realism at local scales. For example, destination information is needed to ensure that vectors describing speed and direction of required migration do not point toward a climatic cul-de-sac by pointing beyond mountain tops. Here, we present an analytical approach that conforms to standard velocity algorithms if climate equivalents are nearby. Otherwise, the algorithm extends the search for climate refugia, which can be expanded to search for multivariate climate matches. With source and destination information available, forward and backward velocities can be calculated allowing useful inferences about conservation of species (present-to-future velocities) and management of species populations (future-to-present velocities).


Global Change Biology | 2014

Douglas‐fir plantations in Europe: a retrospective test of assisted migration to address climate change

Miriam Isaac-Renton; David R. Roberts; Andreas Hamann; Heinrich Spiecker

We evaluate genetic test plantations of North American Douglas-fir provenances in Europe to quantify how tree populations respond when subjected to climate regime shifts, and we examined whether bioclimate envelope models developed for North America to guide assisted migration under climate change can retrospectively predict the success of these provenance transfers to Europe. The meta-analysis is based on long-term growth data of 2800 provenances transferred to 120 European test sites. The model was generally well suited to predict the best performing provenances along north-south gradients in Western Europe, but failed to predict superior performance of coastal North American populations under continental climate conditions in Eastern Europe. However, model projections appear appropriate when considering additional information regarding adaptation of Douglas-fir provenances to withstand frost and drought, even though the model partially fails in a validation against growth traits alone. We conclude by applying the partially validated model to climate change scenarios for Europe, demonstrating that climate trends observed over the last three decades warrant changes to current use of Douglas-fir provenances in plantation forestry throughout Western and Central Europe.


Proceedings of the Royal Society of London B: Biological Sciences | 2015

Glacial refugia and modern genetic diversity of 22 western North American tree species

David R. Roberts; Andreas Hamann

North American tree species, subspecies and genetic varieties have primarily evolved in a landscape of extensive continental ice and restricted temperate climate environments. Here, we reconstruct the refugial history of western North American trees since the last glacial maximum using species distribution models, validated against 3571 palaeoecological records. We investigate how modern subspecies structure and genetic diversity corresponds to modelled glacial refugia, based on a meta-analysis of allelic richness and expected heterozygosity for 473 populations of 22 tree species. We find that species with strong genetic differentiation into subspecies had widespread and large glacial refugia, whereas species with restricted refugia show no differentiation among populations and little genetic diversity, despite being common over a wide range of environments today. In addition, a strong relationship between allelic richness and the size of modelled glacial refugia (r2 = 0.55) suggest that population bottlenecks during glacial periods had a pronounced effect on the presence of rare alleles.


Molecular Ecology | 2014

Genome-wide admixture and ecological niche modelling reveal the maintenance of species boundaries despite long history of interspecific gene flow

Amanda R. De La Torre; David R. Roberts; Sally N. Aitken

The maintenance of species boundaries despite interspecific gene flow has been a continuous source of interest in evolutionary biology. Many hybridizing species have porous genomes with regions impermeable to introgression, conferring reproductive barriers between species. We used ecological niche modelling to study the glacial and postglacial recolonization patterns between the widely hybridizing spruce species Picea glauca and P. engelmannii in western North America. Genome‐wide estimates of admixture based on a panel of 311 candidate gene single nucleotide polymorphisms (SNP) from 290 genes were used to assess levels of admixture and introgression and to identify loci putatively involved in adaptive differences or reproductive barriers between species. Our palaeoclimatic modelling suggests that these two closely related species have a long history of hybridization and introgression, dating to at least 21 000 years ago, yet species integrity is maintained by a combination of strong environmental selection and reduced current interspecific gene flow. Twenty loci showed evidence of divergent selection, including six loci that were both Fst outliers and associated with climatic gradients, and fourteen loci that were either outliers or showed associations with climate. These included genes responsible for carbohydrate metabolism, signal transduction and transcription factors.


PLOS ONE | 2015

Biotic and Climatic Velocity Identify Contrasting Areas of Vulnerability to Climate Change.

Carlos Carroll; Joshua J. Lawler; David R. Roberts; Andreas Hamann

Metrics that synthesize the complex effects of climate change are essential tools for mapping future threats to biodiversity and predicting which species are likely to adapt in place to new climatic conditions, disperse and establish in areas with newly suitable climate, or face the prospect of extirpation. The most commonly used of such metrics is the velocity of climate change, which estimates the speed at which species must migrate over the earth’s surface to maintain constant climatic conditions. However, “analog-based” velocities, which represent the actual distance to where analogous climates will be found in the future, may provide contrasting results to the more common form of velocity based on local climate gradients. Additionally, whereas climatic velocity reflects the exposure of organisms to climate change, resultant biotic effects are dependent on the sensitivity of individual species as reflected in part by their climatic niche width. This has motivated development of biotic velocity, a metric which uses data on projected species range shifts to estimate the velocity at which species must move to track their climatic niche. We calculated climatic and biotic velocity for the Western Hemisphere for 1961–2100, and applied the results to example ecological and conservation planning questions, to demonstrate the potential of such analog-based metrics to provide information on broad-scale patterns of exposure and sensitivity. Geographic patterns of biotic velocity for 2954 species of birds, mammals, and amphibians differed from climatic velocity in north temperate and boreal regions. However, both biotic and climatic velocities were greatest at low latitudes, implying that threats to equatorial species arise from both the future magnitude of climatic velocities and the narrow climatic tolerances of species in these regions, which currently experience low seasonal and interannual climatic variability. Biotic and climatic velocity, by approximating lower and upper bounds on migration rates, can inform conservation of species and locally-adapted populations, respectively, and in combination with backward velocity, a function of distance to a source of colonizers adapted to a site’s future climate, can facilitate conservation of diversity at multiple scales in the face of climate change.


Ecological Applications | 2014

Idiosyncratic responses of grizzly bear habitat to climate change based on projected food resource changes

David R. Roberts; Scott E. Nielsen; Gordon B. Stenhouse

Climate change vulnerability assessments for species of conservation concern often use species distribution and ecological niche modeling to project changes in habitat. One of many assumptions of these approaches is that food web dependencies are consistent in time and environmental space. Species at higher trophic levels that rely on the availability of species at lower trophic levels as food may be sensitive to extinction cascades initiated by changes in the habitat of key food resources. Here we assess climate change vulnerability for Ursus arctos (grizzly bears) in the southern Canadian Rocky Mountains using projected changes to 17 of the most commonly consumed plant food items. We used presence-absence information from 7088 field plots to estimate ecological niches and to project changes in future distributions of each species. Model projections indicated idiosyncratic responses among food items. Many food items persisted or even increased, although several species were found to be vulnerable based on declines or geographic shifts in suitable habitat. These included Hedysarum alpinum (alpine sweet vetch), a critical spring and autumn root-digging resource when little else is available. Potential habitat loss was also identified for three fruiting species of lower importance to bears: Empetrum nigrum (crowberry), Vaccinium scoparium (grouseberry), and Fragaria virginiana (strawberry). A general trend towards uphill migration of bear foods may result in higher vulnerability to bear populations at low elevations, which are also those that are most likely to have human-bear conflict problems. Regardless, a wide diet breadth of grizzly bears, as well as wide environmental niches of most food items, make climate change a much lower threat to grizzly bears than other bear species such as polar bears and panda bears. We cannot exclude, however, future alterations in human behavior and land use resulting from climate change that may reduce survival rates.


Scientific Reports | 2017

Post-glacial biogeography of trembling aspen inferred from habitat models and genetic variance in quantitative traits

Chen Ding; Stefan G. Schreiber; David R. Roberts; Andreas Hamann; Jean S. Brouard

Using species distribution models and information on genetic structure and within-population variance observed in a series of common garden trials, we reconstructed a historical biogeography of trembling aspen in North America. We used an ensemble classifier modelling approach (RandomForest) to reconstruct palaeoclimatic habitat for the periods 21,000, 14,000, 11,000 and 6,000 years before present. Genetic structure and diversity in quantitative traits was evaluated in common garden trials with 43 aspen collections ranging from Minnesota to northern British Columbia. Our main goals were to examine potential recolonisation routes for aspen from southwestern, eastern and Beringian glacial refugia. We further examined if any refugium had stable habitat conditions where aspen clones may have survived multiple glaciations. Our palaeoclimatic habitat reconstructions indicate that aspen may have recolonised boreal Canada and Alaska from refugia in the eastern United States, with separate southwestern refugia for the Rocky Mountain regions. This is further supported by a southeast to northwest gradient of decreasing genetic variance in quantitative traits, a likely result of repeated founder effects. Stable habitat where aspen clones may have survived multiple glaciations was predicted in Mexico and the eastern United States, but not in the west where some of the largest aspen clones have been documented.


Conservation Biology | 2018

Distribution and protection of climatic refugia in North America: Climatic Refugia

Julia Michalak; Joshua J. Lawler; David R. Roberts; Carlos Carroll

As evidenced by past climatic refugia, locations projected to harbor remnants of present-day climates may serve as critical refugia for current biodiversity in the face of modern climate change. We mapped potential climatic refugia in the future across North America, defined as locations with increasingly rare climatic conditions. We identified these locations by tracking projected changes in the size and distribution of climate analogs over time. We used biologically derived thresholds to define analogs and tested the impacts of dispersal limitation with 4 distances to limit analog searches. We identified at most 12% of North America as potential climatic refugia. Refugia extent varied depending on the analog threshold, dispersal distance, and climate projection. However, in all cases refugia were concentrated at high elevations and in topographically complex regions. Refugia identified using different climate projections were largely nested, suggesting that identified refugia were relatively robust to climate-projection selection. Existing conservation areas cover approximately 10% of North America and yet protected up to 25% of identified refugia, indicating that protected areas disproportionately include refugia. Refugia located at lower latitudes (≤40°N) and slightly lower elevations (approximately 2500 m) were more likely to be unprotected. Based on our results, a 23% expansion of the protected-area network would be sufficient to protect the refugia present under all 3 climate projections we explored. We believe these refugia are high conservation priorities due to their potential to harbor rare species in the future. However, these locations are simultaneously highly vulnerable to climate change over the long term. These refugia contracted substantially between the 2050s and the 2080s, which supports the idea that the pace of climate change will strongly determine the availability and effectiveness of refugia for protecting todays biodiversity.


Global Ecology and Biogeography | 2012

Predicting potential climate change impacts with bioclimate envelope models: a palaeoecological perspective

David R. Roberts; Andreas Hamann


Ecography | 2012

Method selection for species distribution modelling: are temporally or spatially independent evaluations necessary?

David R. Roberts; Andreas Hamann

Collaboration


Dive into the David R. Roberts's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chen Ding

University of Alberta

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sally N. Aitken

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julia Michalak

University of Washington

View shared research outputs
Researchain Logo
Decentralizing Knowledge