Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David R. Singleton is active.

Publication


Featured researches published by David R. Singleton.


Applied and Environmental Microbiology | 2002

Molecular and Culture-Based Analyses of Prokaryotic Communities from an Agricultural Soil and the Burrows and Casts of the Earthworm Lumbricus rubellus

Michelle A. Furlong; David R. Singleton; David C. Coleman; William B. Whitman

ABSTRACT The microbial populations in no-till agricultural soil and casts of the earthworm Lumbricus rubellus were examined by culturing and molecular methods. Clone libraries of the 16S rRNA genes were prepared from DNA isolated directly from the soil and earthworm casts. Although no single phylum dominated the soil library of 95 clones, the largest numbers of clones were from Acidobacteria (14%), Cytophagales (13%), Chloroflexi (8%), and γ-Proteobacteria (8%). While the cast clone library of 102 clones was similar to the soil library, the abundances of several taxa were different. Representatives of the Pseudomonas genus as well as the Actinobacteria and Firmicutes increased in number, and one group of unclassified organisms found in the soil library was absent in the cast library. Likewise, soil and cast archaeal 16S rRNA gene libraries were similar, although the abundances of some groups were different. Two hundred and thirty aerobic bacteria were also isolated on general heterotrophic media from casts, burrows, and soil. The cast isolates were both phenotypically and genotypically different from the soil isolates. The cast isolates were more likely to reduce nitrate, grow on acetate and Casamino Acids, and utilize fewer sugars than the soil isolates. On the basis of their ribotypes, the cast isolates were dominated by Aeromonas spp. (28%), which were not found in the soil isolates, and other γ-Proteobacteria (49%). In contrast, the soil isolates were mostly Actinobacteria (53%), Firmicutes (16%), and γ-Proteobacteria (19%). Isolates obtained from the sides of earthworm burrows were not different from the soil isolates. Diversity indices for the collections of isolates as well as rRNA gene libraries indicated that the species richness and evenness were decreased in the casts from their levels in the soil. These results were consistent with a model where a large portion of the microbial population in soil passes through the gastrointestinal tract of the earthworm unchanged while representatives of some phyla increase in abundance.


Applied and Environmental Microbiology | 2005

Stable-Isotope Probing of Bacteria Capable of Degrading Salicylate, Naphthalene, or Phenanthrene in a Bioreactor Treating Contaminated Soil

David R. Singleton; Sabrina N. Powell; R. Sangaiah; Avram Gold; Louise M. Ball; Michael D. Aitken

ABSTRACT [13C6]salicylate, [U-13C]naphthalene, and [U-13C]phenanthrene were synthesized and separately added to slurry from a bench-scale, aerobic bioreactor used to treat soil contaminated with polycyclic aromatic hydrocarbons. Incubations were performed for either 2 days (salicylate, naphthalene) or 7 days (naphthalene, phenanthrene). Total DNA was extracted from the incubations, the “heavy” and “light” DNA were separated, and the bacterial populations associated with the heavy fractions were examined by denaturing gradient gel electrophoresis (DGGE) and 16S rRNA gene clone libraries. Unlabeled DNA from Escherichia coli K-12 was added to each sample as an internal indicator of separation efficiency. While E. coli was not detected in most analyses of heavy DNA, a low number of E. coli sequences was recovered in the clone libraries associated with the heavy DNA fraction of [13C]phenanthrene incubations. The number of E. coli clones recovered proved useful in determining the relative amount of light DNA contamination of the heavy fraction in that sample. Salicylate- and naphthalene-degrading communities displayed similar DGGE profiles and their clone libraries were composed primarily of sequences belonging to the Pseudomonas and Ralstonia genera. In contrast, heavy DNA from the phenanthrene incubations displayed a markedly different DGGE profile and was composed primarily of sequences related to the Acidovorax genus. There was little difference in the DGGE profiles and types of sequences recovered from 2- and 7-day incubations with naphthalene, so secondary utilization of the 13C during the incubation did not appear to be an issue in this experiment.


The ISME Journal | 2013

Hydrocarbon-degrading bacteria enriched by the Deepwater Horizon oil spill identified by cultivation and DNA-SIP

Tony Gutierrez; David R. Singleton; David Berry; Tingting Yang; Michael D. Aitken; Andreas Teske

The massive influx of crude oil into the Gulf of Mexico during the Deepwater Horizon (DWH) disaster triggered dramatic microbial community shifts in surface oil slick and deep plume waters. Previous work had shown several taxa, notably DWH Oceanospirillales, Cycloclasticus and Colwellia, were found to be enriched in these waters based on their dominance in conventional clone and pyrosequencing libraries and were thought to have had a significant role in the degradation of the oil. However, this type of community analysis data failed to provide direct evidence on the functional properties, such as hydrocarbon degradation of organisms. Using DNA-based stable-isotope probing with uniformly 13C-labelled hydrocarbons, we identified several aliphatic (Alcanivorax, Marinobacter)- and polycyclic aromatic hydrocarbon (Alteromonas, Cycloclasticus, Colwellia)-degrading bacteria. We also isolated several strains (Alcanivorax, Alteromonas, Cycloclasticus, Halomonas, Marinobacter and Pseudoalteromonas) with demonstrable hydrocarbon-degrading qualities from surface slick and plume water samples collected during the active phase of the spill. Some of these organisms accounted for the majority of sequence reads representing their respective taxa in a pyrosequencing data set constructed from the same and additional water column samples. Hitherto, Alcanivorax was not identified in any of the previous water column studies analysing the microbial response to the spill and we discuss its failure to respond to the oil. Collectively, our data provide unequivocal evidence on the hydrocarbon-degrading qualities for some of the dominant taxa enriched in surface and plume waters during the DWH oil spill, and a more complete understanding of their role in the fate of the oil.


Applied and Environmental Microbiology | 2009

Characterization of a polycyclic aromatic hydrocarbon degradation gene cluster in a phenanthrene-degrading Acidovorax strain.

David R. Singleton; Liza Guzmán Ramirez; Michael D. Aitken

ABSTRACT Acidovorax sp. strain NA3 was isolated from polycyclic aromatic hydrocarbon (PAH)-contaminated soil that had been treated in a bioreactor and enriched with phenanthrene. The 16S rRNA gene of the isolate possessed 99.8 to 99.9% similarity to the dominant sequences recovered during a previous stable-isotope probing experiment with [U-13C]phenanthrene on the same soil (D. R. Singleton, S. N. Powell, R. Sangaiah, A. Gold, L. M. Ball, and M. D. Aitken, Appl. Environ. Microbiol. 71:1202-1209, 2005). The strain grew on phenanthrene as a sole carbon and energy source and could mineralize 14C from a number of partially labeled PAHs, including naphthalene, phenanthrene, chrysene, benz[a]anthracene, and benzo[a]pyrene, but not pyrene or fluoranthene. Southern hybridizations of a genomic fosmid library with a fragment of the large subunit of the ring-hydroxylating dioxygenase gene from a naphthalene-degrading Pseudomonas strain detected the presence of PAH degradation genes subsequently determined to be highly similar in both nucleotide sequence and gene organization to an uncharacterized Alcaligenes faecalis gene cluster. The genes were localized to the chromosome of strain NA3. To test for gene induction by selected compounds, RNA was extracted from amended cultures and reverse transcribed, and cDNA associated with the enzymes involved in the first three steps of phenanthrene degradation was quantified by quantitative real-time PCR. Expression of each of the genes was induced most strongly by phenanthene and to a lesser extent by naphthalene, but other tested PAHs and PAH metabolites had negligible effects on gene transcript levels.


Microbial Ecology | 2008

Effect of Incubation Conditions on the Enrichment of Pyrene-degrading Bacteria Identified by Stable-isotope Probing in an Aged, PAH-contaminated Soil

Maiysha D. Jones; David R. Singleton; Darryl P. Carstensen; Sabrina N. Powell; Julie S. Swanson; Frederic K. Pfaender; Michael D. Aitken

To determine whether the diversity of pyrene-degrading bacteria in an aged polycyclic aromatic hydrocarbon-contaminated soil is affected by the addition of inorganic nutrients or by slurrying the soil, various incubation conditions (all including phosphate buffer) were examined by mineralization studies and stable-isotope probing (SIP). The addition of nitrogen to either continuously mixed slurry or static field-wet soil incubations increased the rate and extent of mineralization of [14C]pyrene, with the most rapid mineralization observed in slurried, nitrogen-amended soil. Microcosms of slurry and static field-wet soil amended with nitrogen were also examined by SIP with [U-13C]pyrene. Recovered 13C-enriched deoxyribonucleic acid (DNA) was analyzed by denaturing-gradient gel electrophoresis (DGGE) and 16S ribosomal ribonucleic acid (rRNA) gene clone libraries. DGGE profiles of 13C-enriched DNA fractions from both incubation conditions were similar, suggesting that pyrene-degrading bacterial community diversity may be independent of treatment method. The vast majority (67 of 71) of the partial sequences recovered from clone libraries were greater than or equal to 97% similar to one another, 98% similar to sequences of pyrene-degrading bacteria previously detected by SIP with pyrene in different soil, and only 89% similar to the closest cultivated genus. All of the sequences recovered from the field-wet incubation and most of the sequences recovered from the slurry incubation were in this clade. Of the four sequences from slurry incubations not within this clade, three possessed greater than 99% similarity to the 16S rRNA gene sequences of phylogenetically dissimilar Caulobacter spp.


Applied and Environmental Microbiology | 2011

Multiple DNA Extractions Coupled with Stable-Isotope Probing of Anthracene-Degrading Bacteria in Contaminated Soil

Maiysha D. Jones; David R. Singleton; Wei Sun; Michael D. Aitken

ABSTRACT In many of the DNA-based stable-isotope probing (SIP) studies published to date in which soil communities were investigated, a single DNA extraction was performed on the soil sample, usually using a commercial DNA extraction kit, prior to recovering the 13C-labeled (heavy) DNA by density-gradient ultracentrifugation. Recent evidence suggests, however, that a single extraction of a soil sample may not lead to representative recovery of DNA from all of the organisms in the sample. To determine whether multiple DNA extractions would affect the DNA yield, the eubacterial 16S rRNA gene copy number, or the identification of anthracene-degrading bacteria, we performed seven successive DNA extractions on the same aliquot of contaminated soil either untreated or enriched with [U-13C]anthracene. Multiple extractions were necessary to maximize the DNA yield and 16S rRNA gene copy number from both untreated and anthracene-enriched soil samples. Sequences within the order Sphingomonadales, but unrelated to any previously described genus, dominated the 16S rRNA gene clone libraries derived from 13C-enriched DNA and were designated “anthracene group 1.” Sequences clustering with Variovorax spp., which were also highly represented, and sequences related to the genus Pigmentiphaga were newly associated with anthracene degradation. The bacterial groups collectively identified across all seven extracts were all recovered in the first extract, although quantitative PCR analysis of SIP-identified groups revealed quantitative differences in extraction patterns. These results suggest that performing multiple DNA extractions on soil samples improves the extractable DNA yield and the number of quantifiable eubacterial 16S rRNA gene copies but have little qualitative effect on the identification of the bacterial groups associated with the degradation of a given carbon source by SIP.


Applied Microbiology and Biotechnology | 2013

Pyrosequence analyses of bacterial communities during simulated in situ bioremediation of polycyclic aromatic hydrocarbon-contaminated soil.

David R. Singleton; Maiysha D. Jones; Stephen D. Richardson; Michael D. Aitken

Barcoded amplicon pyrosequencing was used to generate libraries of partial 16S rRNA genes from two columns designed to simulate in situ bioremediation of polycyclic aromatic hydrocarbons (PAHs) in weathered, contaminated soil. Both columns received a continuous flow of artificial groundwater but one of the columns additionally tested the impact of biostimulation with oxygen and inorganic nutrients on indigenous soil bacterial communities. The penetration of oxygen to previously anoxic regions of the columns resulted in the most significant community changes. PAH-degrading bacteria previously determined by stable-isotope probing (SIP) of the untreated soil generally responded negatively to the treatment conditions, with only members of the Acidovorax and a group of uncharacterized PAH-degrading Gammaproteobacteria maintaining a significant presence in the columns. Additional groups of sequences associated with the Betaproteobacterial family Rhodocyclaceae (including those associated with PAH degradation in other soils), and the Thiobacillus, Thermomonas, and Bradyrhizobium genera were also present in high abundance in the biostimulated column. Similar community responses were previously observed during biostimulated ex situ treatment of the same soil in aerobic, slurry-phase bioreactors. While the low relative abundance of many SIP-determined groups in the column libraries may be a reflection of the slow removal of PAHs in that system, the similar response of known PAH degraders in a higher-rate bioreactor system suggests that alternative PAH-degrading bacteria, unidentified by SIP of the untreated soil, may also be enriched in engineered systems.


Applied and Environmental Microbiology | 2012

Heterologous Expression of Polycyclic Aromatic Hydrocarbon Ring-Hydroxylating Dioxygenase Genes from a Novel Pyrene-Degrading Betaproteobacterium

David R. Singleton; Jing Hu; Michael D. Aitken

ABSTRACT A betaproteobacterium within the family Rhodocyclaceae previously identified as a pyrene degrader via stable-isotope probing (SIP) of contaminated soil (designated pyrene group 1 or PG1) was cultivated as the dominant member of a mixed bacterial culture. A metagenomic library was constructed, and the largest contigs were analyzed for genes associated with polycyclic aromatic hydrocarbon (PAH) metabolism. Eight pairs of genes with similarity to the α- and β-subunits of ring-hydroxylating dioxygenases (RHDs) associated with aerobic bacterial PAH degradation were identified and linked to PG1 through PCR analyses of a simplified enrichment culture. In tandem with a ferredoxin and reductase found in close proximity to one pair of RHD genes, six of the RHDs were cloned and expressed in Escherichia coli. Each cloned RHD was tested for activity against nine PAHs ranging in size from two to five rings. Despite differences in their predicted protein sequences, each of the six RHDs was capable of transforming phenanthrene and pyrene. Three RHDs could additionally transform naphthalene and fluorene, and these genotypes were also associated with the ability of the E. coli constructs to convert indole to indigo. Only one of the six cloned RHDs was capable of transforming anthracene and benz[a]anthracene. None of the tested RHDs were capable of significantly transforming fluoranthene, chrysene, or benzo[a]pyrene.


Applied and Environmental Microbiology | 2011

Stable Isotope Probing of an Algal Bloom To Identify Uncultivated Members of the Rhodobacteraceae Associated with Low-Molecular-Weight Polycyclic Aromatic Hydrocarbon Degradation

Tony Gutierrez; David R. Singleton; Michael D. Aitken; Kirk T. Semple

ABSTRACT Polycyclic aromatic hydrocarbon (PAH)-degrading bacteria associated with an algal bloom in Tampa Bay, FL, were investigated by stable isotope probing (SIP) with uniformly labeled [13C]naphthalene. The dominant sequences in clone libraries constructed from 13C-enriched bacterial DNA (from naphthalene enrichments) were identified as uncharacterized members of the family Rhodobacteraceae. Quantitative PCR primers targeting the 16S rRNA gene of these uncultivated organisms were used to determine their abundance in incubations amended with unlabeled naphthalene and phenanthrene, both of which showed substantial increases in gene copy numbers during the experiments. As demonstrated by this work, the application of uniformly 13C-labeled PAHs in SIP experiments can successfully be used to identify novel PAH-degrading bacteria in marine waters.


Biodegradation | 2008

Effects of enrichment with phthalate on polycyclic aromatic hydrocarbon biodegradation in contaminated soil

David R. Singleton; Stephen D. Richardson; Michael D. Aitken

The effect of enrichment with phthalate on the biodegradation of polycyclic aromatic hydrocarbons (PAH) was tested with bioreactor-treated and untreated contaminated soil from a former manufactured gas plant (MGP) site. Soil samples that had been treated in a bioreactor and enriched with phthalate mineralized 14C-labeled phenanthrene and pyrene to a greater extent than unenriched samples over a 22.5-h incubation, but did not stimulate benzo[a]pyrene mineralization. In contrast to the positive effects on 14C-labeled phenanthrene and pyrene, no significant differences were found in the extent of biodegradation of native PAH when untreated contaminated soil was incubated with and without phthalate amendment. Denaturing-gradient gel electrophoresis (DGGE) profiles of bacterial 16S rRNA genes from unenriched and phthalate-enriched soil samples were substantially different, and clonal sequences matched to prominent DGGE bands revealed that β-Proteobacteria related to Ralstonia were most highly enriched by phthalate addition. Quantitative real-time PCR analyses confirmed that, of previously determined PAH-degraders in the bioreactor, only Ralstonia-type organisms increased in response to enrichment, accounting for 89% of the additional bacterial 16S rRNA genes resulting from phthalate enrichment. These findings indicate that phthalate amendment of this particular PAH-contaminated soil did not significantly enrich for organisms associated with high molecular weight PAH degradation or have any significant effect on overall degradation of native PAH in the soil.

Collaboration


Dive into the David R. Singleton's collaboration.

Top Co-Authors

Avatar

Michael D. Aitken

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Maiysha D. Jones

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Sabrina N. Powell

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Stephen D. Richardson

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Allison N. Dickey

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Avram Gold

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Elizabeth H. Scholl

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Fred A. Wright

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andreas Teske

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge