Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David Redmond is active.

Publication


Featured researches published by David Redmond.


Nature | 2017

Conversion of adult endothelium to immunocompetent haematopoietic stem cells

Raphael Lis; Charles Karrasch; Michael G. Poulos; Balvir Kunar; David Redmond; Jose Gabriel Barcia Duran; Chaitanya R. Badwe; William Schachterle; Michael Ginsberg; Jenny Xiang; Arash Rafii Tabrizi; Koji Shido; Z. Rosenwaks; Olivier Elemento; Nancy A. Speck; Jason M. Butler; Joseph M. Scandura; Shahin Rafii

Developmental pathways that orchestrate the fleeting transition of endothelial cells into haematopoietic stem cells remain undefined. Here we demonstrate a tractable approach for fully reprogramming adult mouse endothelial cells to haematopoietic stem cells (rEC-HSCs) through transient expression of the transcription-factor-encoding genes Fosb, Gfi1, Runx1, and Spi1 (collectively denoted hereafter as FGRS) and vascular-niche-derived angiocrine factors. The induction phase (days 0–8) of conversion is initiated by expression of FGRS in mature endothelial cells, which results in endogenous Runx1 expression. During the specification phase (days 8–20), RUNX1+ FGRS-transduced endothelial cells commit to a haematopoietic fate, yielding rEC-HSCs that no longer require FGRS expression. The vascular niche drives a robust self-renewal and expansion phase of rEC-HSCs (days 20–28). rEC-HSCs have a transcriptome and long-term self-renewal capacity similar to those of adult haematopoietic stem cells, and can be used for clonal engraftment and serial primary and secondary multi-lineage reconstitution, including antigen-dependent adaptive immune function. Inhibition of TGFβ and CXCR7 or activation of BMP and CXCR4 signalling enhanced generation of rEC-HSCs. Pluripotency-independent conversion of endothelial cells into autologous authentic engraftable haematopoietic stem cells could aid treatment of haematological disorders.


Nature Communications | 2015

Epigenomic evolution in diffuse large B-cell lymphomas.

Heng Pan; Yanwen Jiang; Michela Boi; Fabrizio Tabbò; David Redmond; Kui Nie; Marco Ladetto; Annalisa Chiappella; Leandro Cerchietti; Rita Shaknovich; Ari Melnick; Giorgio Inghirami; Wayne Tam; Olivier Elemento

The contribution of epigenomic alterations to tumour progression and relapse is not well characterized. Here we characterize an association between disease progression and DNA methylation in diffuse large B-cell lymphoma (DLBCL). By profiling genome-wide DNA methylation at single-base pair resolution in thirteen DLBCL diagnosis–relapse sample pairs, we show that DLBCL patients exhibit heterogeneous evolution of tumour methylomes during relapse. We identify differentially methylated regulatory elements and determine a relapse-associated methylation signature converging on key pathways such as transforming growth factor-β (TGF-β) receptor activity. We also observe decreased intra-tumour methylation heterogeneity from diagnosis to relapsed tumour samples. Relapse-free patients display lower intra-tumour methylation heterogeneity at diagnosis compared with relapsed patients in an independent validation cohort. Furthermore, intra-tumour methylation heterogeneity is predictive of time to relapse. Therefore, we propose that epigenomic heterogeneity may support or drive the relapse phenotype and can be used to predict DLBCL relapse.


Genome Biology | 2014

Deep Sequencing Reveals Clonal Evolution Patterns and Mutation Events Associated With Relapse In B Cell Lymphomas

Yanwen Jiang; David Redmond; Kui Nie; Ken W Eng; Thomas Clozel; Peter Martin; Leonard Hc Tan; Ari Melnick; Wayne Tam; Olivier Elemento

BackgroundMolecular mechanisms associated with frequent relapse of diffuse large B-cell lymphoma (DLBCL) are poorly defined. It is especially unclear how primary tumor clonal heterogeneity contributes to relapse. Here, we explore unique features of B-cell lymphomas - VDJ recombination and somatic hypermutation - to address this question.ResultsWe performed high-throughput sequencing of rearranged VDJ junctions in 14 pairs of matched diagnosis-relapse tumors, among which 7 pairs were further characterized by exome sequencing. We identify two distinctive modes of clonal evolution of DLBCL relapse: an early-divergent mode in which clonally related diagnosis and relapse tumors diverged early and developed in parallel; and a late-divergent mode in which relapse tumors developed directly from diagnosis tumors with minor divergence. By examining mutation patterns in the context of phylogenetic information provided by VDJ junctions, we identified mutations in epigenetic modifiers such as KMT2D as potential early driving events in lymphomagenesis and immune escape alterations as relapse-associated events.ConclusionsAltogether, our study for the first time provides important evidence that DLBCL relapse may result from multiple, distinct tumor evolutionary mechanisms, providing rationale for therapies for each mechanism. Moreover, this study highlights the urgent need to understand the driving roles of epigenetic modifier mutations in lymphomagenesis, and immune surveillance factor genetic lesions in relapse.


Genome Medicine | 2016

Single-cell TCRseq: paired recovery of entire T-cell alpha and beta chain transcripts in T-cell receptors from single-cell RNAseq

David Redmond; Asaf Poran; Olivier Elemento

Accurate characterization of the repertoire of the T-cell receptor (TCR) alpha and beta chains is critical to understanding adaptive immunity. Such characterization has many applications across such fields as vaccine development and response, clone-tracking in cancer, and immunotherapy. Here we present a new methodology called single-cell TCRseq (scTCRseq) for the identification and assembly of full-length rearranged V(D)J T-cell receptor sequences from paired-end single-cell RNA sequencing reads. The method allows accurate identification of the V(D)J rearrangements for each individual T-cell and has the novel ability to recover paired alpha and beta segments. Source code is available at https://github.com/ElementoLab/scTCRseq.


Cancer immunology research | 2016

Deep Sequencing of T-Cell Receptor DNA as a biomarker of clonally expanded TILs in breast cancer after immunotherapy

David B. Page; Jianda Yuan; David Redmond; Y Hannah Wen; Jeremy C. Durack; Ryan Emerson; Stephen B. Solomon; Zhiwan Dong; Phillip Wong; Christopher Comstock; Adi Diab; Janice Sung; Majid Maybody; Elizabeth A. Morris; Edi Brogi; Monica Morrow; Virgilio Sacchini; Olivier Elemento; Harlan Robins; Sujata Patil; James P. Allison; Jedd D. Wolchok; Clifford A. Hudis; Larry Norton; Heather L. McArthur

Tumor cryoablation plus immune checkpoint blockade facilitates antitumor T-cell responses (TCRs) and improves survival in mice. Deep sequencing of TCRs in human early-stage breast cancer tumors revealed T-cell clonality and density and served as a biomarker after cryo-immunotherapy. In early-stage breast cancer, the degree of tumor-infiltrating lymphocytes (TIL) predicts response to chemotherapy and overall survival. Combination immunotherapy with immune checkpoint antibody plus tumor cryoablation can induce lymphocytic infiltrates and improve survival in mice. We used T-cell receptor (TCR) DNA sequencing to evaluate both the effect of cryoimmunotherapy in humans and the feasibility of TCR sequencing in early-stage breast cancer. In a pilot clinical trial, 18 women with early-stage breast cancer were treated preoperatively with cryoablation, single-dose anti–CTLA-4 (ipilimumab), or cryoablation + ipilimumab. TCRs within serially collected peripheral blood and tumor tissue were sequenced. In baseline tumor tissues, T-cell density as measured by TCR sequencing correlated with TIL scores obtained by hematoxylin and eosin (H&E) staining. However, tumors with little or no lymphocytes by H&E contained up to 3.6 × 106 TCR DNA sequences, highlighting the sensitivity of the ImmunoSEQ platform. In this dataset, ipilimumab increased intratumoral T-cell density over time, whereas cryoablation ± ipilimumab diversified and remodeled the intratumoral T-cell clonal repertoire. Compared with monotherapy, cryoablation plus ipilimumab was associated with numerically greater numbers of peripheral blood and intratumoral T-cell clones expanding robustly following therapy. In conclusion, TCR sequencing correlates with H&E lymphocyte scoring and provides additional information on clonal diversity. These findings support further study of the use of TCR sequencing as a biomarker for T-cell responses to therapy and for the study of cryoimmunotherapy in early-stage breast cancer. Cancer Immunol Res; 4(10); 835–44. ©2016 AACR.


Leukemia | 2016

EBV-miR-BHRF1-2 targets PRDM1/Blimp1: potential role in EBV lymphomagenesis

J Ma; Kui Nie; David Redmond; Yiyuan Liu; Olivier Elemento; Daniel M. Knowles; Wayne Tam

PRDM1/Blimp1, a master regulator of B-cell terminal differentiation, has been identified as a tumor suppressor gene in aggressive lymphomas, including diffuse large B-cell lymphoma (DLBCL). It has been shown in DLBCL and Hodgkin lymphoma that PRDM1 is downregulated by cellular microRNAs. In this study, we identify the Epstein–Barr virus (EBV) microRNA (miRNA), EBV-miR-BHRF1-2, as a viral miRNA regulator of PRDM1. EBV-miR-BHRF1-2 repressed luciferase reporter activity by specific interaction with the seed region within the PRDM1 3’ untranslated region. EBV-miR-BHRF1-2 inhibition upregulated PRDM1 protein expression in lymphoblastoid cell lines (LCL), supporting a role of miR-BHRF1-2 in PRDM1 downregulation in vivo. Discordance of PRDM1 messenger RNA and protein expressions is associated with high EBV-miR-BHRF1-2 levels in LCLs and primary post-transplant EBV-positive DLBCL. Enforced expression of PRDM1-induced apoptosis and cell cycle arrest in LCL cells. Inhibition of EBV-miR-BHRF1-2 negatively regulates cell cycle and decreases expression of SCARNA20, a small nucleolar RNA that is also downregulated by PRDM1 overexpression. The interaction between EBV-miR-BHRF1-2 and PRDM1 may be one of the mechanisms by which EBV-miR-BHRF1-2 promotes EBV lymphomagenesis. Our results support the potential of EBV-miR-BHRF1-2 as a therapeutic target in EBV-associated lymphoma.


Nature Communications | 2017

EZH2 enables germinal centre formation through epigenetic silencing of CDKN1A and an Rb-E2F1 feedback loop

Wendy Béguelin; Martín A. Rivas; María Teresa Fernández; Matt Teater; Alberto Purwada; David Redmond; Hao Shen; Matt F. Challman; Olivier Elemento; Ankur Singh; Ari Melnick

The EZH2 histone methyltransferase is required for B cells to form germinal centers (GC). Here we show that EZH2 mediates GC formation through repression of cyclin-dependent kinase inhibitor CDKN1A (p21Cip1). Deletion of Cdkn1a rescues the GC reaction in Ezh2−/− mice. Using a 3D B cell follicular organoid system that mimics the GC reaction, we show that depletion of EZH2 suppresses G1 to S phase transition of GC B cells in a Cdkn1a-dependent manner. GC B cells of Cdkn1a−/−Ezh2−/− mice have high levels of phospho-Rb, indicating that loss of Cdkn1a enables progression of cell cycle. Moreover, the transcription factor E2F1 induces EZH2 during the GC reaction. E2f1−/− mice manifest impaired GC responses, which is rescued by restoring EZH2 expression, thus defining a positive feedback loop in which EZH2 controls GC B cell proliferation by suppressing CDKN1A, enabling cell cycle progression with a concomitant phosphorylation of Rb and release of E2F1.The histone methyltransferase EZH2 silences genes by generating H3K27me3 marks. Here the authors use a 3D GC organoid and show EZH2 mediates germinal centre (GC) formation through epigenetic silencing of CDKN1A and release of cell cycle checkpoints.


Journal of Visualized Experiments | 2015

VDJ-Seq: Deep Sequencing Analysis of Rearranged Immunoglobulin Heavy Chain Gene to Reveal Clonal Evolution Patterns of B Cell Lymphoma.

Yanwen Jiang; Kui Nie; David Redmond; Ari Melnick; Wayne Tam; Olivier Elemento

Understanding tumor clonality is critical to understanding the mechanisms involved in tumorigenesis and disease progression. In addition, understanding the clonal composition changes that occur within a tumor in response to certain micro-environment or treatments may lead to the design of more sophisticated and effective approaches to eradicate tumor cells. However, tracking tumor clonal sub-populations has been challenging due to the lack of distinguishable markers. To address this problem, a VDJ-seq protocol was created to trace the clonal evolution patterns of diffuse large B cell lymphoma (DLBCL) relapse by exploiting VDJ recombination and somatic hypermutation (SHM), two unique features of B cell lymphomas. In this protocol, Next-Generation sequencing (NGS) libraries with indexing potential were constructed from amplified rearranged immunoglobulin heavy chain (IgH) VDJ region from pairs of primary diagnosis and relapse DLBCL samples. On average more than half million VDJ sequences per sample were obtained after sequencing, which contain both VDJ rearrangement and SHM information. In addition, customized bioinformatics pipelines were developed to fully utilize sequence information for the characterization of IgH-VDJ repertoire within these samples. Furthermore, the pipeline allows the reconstruction and comparison of the clonal architecture of individual tumors, which enables the examination of the clonal heterogeneity within the diagnosis tumors and deduction of clonal evolution patterns between diagnosis and relapse tumor pairs. When applying this analysis to several diagnosis-relapse pairs, we uncovered key evidence that multiple distinctive tumor evolutionary patterns could lead to DLBCL relapse. Additionally, this approach can be expanded into other clinical aspects, such as identification of minimal residual disease, monitoring relapse progress and treatment response, and investigation of immune repertoires in non-lymphoma contexts.


Nature Communications | 2018

AICDA drives epigenetic heterogeneity and accelerates germinal center-derived lymphomagenesis

Matt Teater; Pilar M. Dominguez; David Redmond; Zhengming Chen; Daisuke Ennishi; David W. Scott; Luisa Cimmino; Paola Ghione; Jayanta Chaudhuri; Randy D. Gascoyne; Iannis Aifantis; Giorgio Inghirami; Olivier Elemento; Ari Melnick; Rita Shaknovich

Epigenetic heterogeneity is emerging as a feature of tumors. In diffuse large B-cell lymphoma (DLBCL), increased cytosine methylation heterogeneity is associated with poor clinical outcome, yet the underlying mechanisms remain unclear. Activation-induced cytidine deaminase (AICDA), an enzyme that mediates affinity maturation and facilitates DNA demethylation in germinal center (GC) B cells, is required for DLBCL pathogenesis and linked to inferior outcome. Here we show that AICDA overexpression causes more aggressive disease in BCL2-driven murine lymphomas. This phenotype is associated with increased cytosine methylation heterogeneity, but not with increased AICDA-mediated somatic mutation burden. Reciprocally, the cytosine methylation heterogeneity characteristic of normal GC B cells is lost upon AICDA depletion. These observations are relevant to human patients, since DLBCLs with high AICDA expression manifest increased methylation heterogeneity vs. AICDA-low DLBCLs. Our results identify AICDA as a driver of epigenetic heterogeneity in B-cell lymphomas with potential significance for other tumors with aberrant expression of cytidine deaminases.In diffuse large B-cell lymphoma (DLBCL) increased epigenetic heterogeneity in the form of cytosine methylation is known to link to a poor clinical outcome. Here, the authors show that AICDA, an enzyme required for DLBCL pathogenesis, increases cytosine methylation heterogeneity.


Development | 2018

Wnt inhibition promotes vascular specification of embryonic cardiac progenitors

David E. Reichman; Laura Park; L. Man; David Redmond; Kenny Chao; Richard P. Harvey; Makoto M. Taketo; Z. Rosenwaks; Daylon James

ABSTRACT Several studies have demonstrated a multiphasic role for Wnt signaling during embryonic cardiogenesis and developed protocols that enrich for cardiac derivatives during in vitro differentiation of human pluripotent stem cells (hPSCs). However, few studies have investigated the role of Wnt signaling in the specification of cardiac progenitor cells (CPCs) toward downstream fates. Using transgenic mice and hPSCs, we tracked endothelial cells (ECs) that originated from CPCs expressing NKX2.5. Analysis of EC-fated CPCs at discrete phenotypic milestones during hPSC differentiation identified reduced Wnt activity as a hallmark of EC specification, and the enforced activation or inhibition of Wnt reduced or increased, respectively, the degree of vascular commitment within the CPC population during both hPSC differentiation and mouse embryogenesis. Wnt5a, which has been shown to exert an inhibitory influence on Wnt signaling during cardiac development, was dynamically expressed during vascular commitment of hPSC-derived CPCs, and ectopic Wnt5a promoted vascular specification of hPSC-derived and mouse embryonic CPCs. Summary: Non-canonical inhibitory Wnt signaling via Wnt5a fosters endothelial differentiation of Nkx2.5+ cardiac progenitor cells during mouse embryogenesis and human pluripotent stem cell differentiation.

Collaboration


Dive into the David Redmond's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jayanta Chaudhuri

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Adi Diab

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Clifford A. Hudis

Memorial Sloan Kettering Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge