Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David S. Chi is active.

Publication


Featured researches published by David S. Chi.


Journal of Interferon and Cytokine Research | 1999

Human Endothelium as a Source of Multifunctional Cytokines: Molecular Regulation and Possible Role in Human Disease

Guha Krishnaswamy; Jim Kelley; Lakshminarayan Yerra; J. Kelly Smith; David S. Chi

Endothelial cells, by virtue of their capacity to express adhesion molecules and cytokines, are intricately involved in inflammatory processes. Endothelial cells have been shown to express interleukin-1 (IL-1), IL-5, IL-6, IL-8, IL-11, IL-15, several colony-stimulating factors (CSF), granulocyte-CSF (G-CSF), macrophage CSF (M-CSF) and granulocyte-macrophage CSF (GM-CSF), and the chemokines, monocyte chemotactic protein-1 (MCP-1), RANTES, and growth-related oncogene protein-alpha (GRO-alpha). IL-1 and tumor necrosis factor-alpha (TNF-alpha) produced by infiltrating inflammatory cells can induce endothelial cells to express several of these cytokines as well as adhesion molecules. Induction of these cytokines in endothelial cells has been demonstrated by such diverse processes as hypoxia and bacterial infection. Recent studies have demonstrated that adhesive interactions between endothelial cells and recruited inflammatory cells can also signal the secretion of inflammatory cytokines. This cross-talk between inflammatory cells and the endothelium may be critical to the development of chronic inflammatory states. Endothelial-derived cytokines may be involved in hematopoiesis, cellular chemotaxis and recruitment, bone resorption, coagulation, and the acute-phase protein synthesis. As many of these processes are critical to the maturation of an inflammatory and reparative state, it appears likely that endothelial-derived cytokines play a crucial role in several diseases, including atherosclerosis, graft rejection, asthma, vasculitis, and sepsis. Genetic and pharmacologic manipulation of endothelial-derived cytokines provides an additional approach to the management of chronic inflammatory diseases.


Journal of Interferon and Cytokine Research | 2004

The Role of Human Mast Cell-Derived Cytokines in Eosinophil Biology

Bita Shakoory; S. Matthew Fitzgerald; Steven A Lee; David S. Chi; Guha Krishnaswamy

Eosinophil-mediated diseases, such as allergic asthma, eosinophilic fasciitis, and certain hypersensitivity pulmonary disorders, are characterized by eosinophil infiltration and tissue injury. Mast cells and T cells often colocalize to these areas. Recent data suggest that mast cells can contribute to eosinophil-mediated inflammatory responses. Activation of mast cells can occur by antigen and immunoglobulin E (IgE) via the high-affinity receptor (FcepsilonRI) for IgE. The liberation of proteases, leukotrienes, lipid mediators, and histamine can contribute to tissue inflammation and allow recruitment of eosinophils to tissue. In addition, the synthesis and expression of a plethora of cytokines and chemokines (such as granulocyte-macrophage colony-stimulating factor [GM-CSF], interleukin-1 [IL-1], IL-3, IL-5, tumor necrosis factor-alpha [TNF-alpha], and the chemokines IL-8, regulated upon activation normal T cell expressed and secreted [RANTES], monocyte chemotactic protein-1 [MCP-1], and eotaxin) by mast cells can influence eosinophil biology. Stem cell factor (SCF)-c-kit, cytokine-cytokine receptor, and chemokine-chemokine receptor (CCR3) interactions leading to nuclear factor kappaB (NF-kappaB), mitogen-activated protein kinase (MAPK) expression, and other signaling pathways can modulate eosinophil function. Eosinophil hematopoiesis, activation, survival, and elaboration of mediators can all be regulated thus by mast cells in tissue. Moreover, because eosinophils can secrete SCF, eosinophils can regulate mast cell function in a paracrine manner. This two-way interaction between eosinophils and mast cells can pave the way for chronic inflammatory responses in a variety of human diseases. This review summarizes this pivotal interaction between human mast cells and eosinophils.


Digestive Diseases and Sciences | 1996

A newly developed PCR assay of H. pylori in gastric biopsy, saliva, and feces. Evidence of high prevalence of H. pylori in saliva supports oral transmission.

Chuanfu Li; Tuanzhu Ha; Donald A. Ferguson; David S. Chi; Rong-Guo Zhao; Nikihil R. Patel; Guha Krishnaswamy; Eapen Thomas

We have recently developed a new PCR assay for the detection of H. pylori. In this study, the polymerase chain reaction (PCR) assay was used to detect H. pylori in 88 gastric biopsy, 85 saliva, and 71 fecal specimens from 88 patients. H. pylori infection was confirmed in 71 of 88 patients by culture and/or histological stain of gastric biopsies. Serum IgG antibody to H. pylori was also measured and resulted in 97% sensitivity and 94% specificity. H. pylori DNA was detected by the PCR assay in gastric biopsy specimens from all 71 patients (100% sensitivity) with proven gastric H. pylori infection but not from 17 noninfected patients (100% specificity). In saliva specimens, H. pylori DNA was identified in 57 of the 68 patients (84%) with proven gastric H. pylori infection and in three of the 17 patients without gastric H. pylori infection. However, the PCR assay was only able to detect H. pylori DNA in the feces from 15 of 61 patients (25%) with proven gastric H. pylori infection and one of the 10 patients without gastric H. pylori infection. The results show that the PCR assay is reliable for detecting the presence of H. pylori in gastric biopsy and saliva specimens. The data indicate that H. pylori exists in a higher prevalence in saliva than feces and that the fecal-oral route may be an important means of transmission of this infection in developing countries but not as significant as previously suspected in the developed countries. It is likely that the oral-oral route is more prominent.


Methods of Molecular Biology | 2006

The Human Mast Cell

Guha Krishnaswamy; Omar Ajitawi; David S. Chi

Mast cells are fascinating, multifunctional, tissue-dwelling cells that have been traditionally associated with the allergic response. However, recent studies suggest these cells may be capable of regulating inflammation, host defense, and innate immunity. The purpose of this review is to present salient aspects of mast cell biology in the context of mast cell function in physiology and disease. After their development from bone marrow-derived progenitor cells that are primed with stem cell factor, mast cells continue their maturation and differentiation in peripheral tissue, developing into two well-described subsets of cells, MC(T) and MC(TC) cells. These cells can be distinguished on the basis of their tissue location, dependence on T lymphocytes, and their granule contents. Mast cells can undergo activation by antigens/allergens, superoxides, complement proteins, neuropeptides, and lipoproteins. After activation, mast cells express histamine, leukotrienes, and prostanoids, as well as proteases, and many cytokines and chemokines. These mediators may be pivotal to the genesis of an inflammatory response. By virtue of their location and mediator expression, mast cells may play an active role in many diseases, such as allergy, parasitic diseases, atherosclerosis, malignancy, asthma, pulmonary fibrosis, and arthritis. Recent data also suggest that mast cells play a vital role in host defense against pathogens by elaboration of tumor necrosis factor alpha. Mast cells also express the Toll-like receptor, which may further accentuate their role in the immune-inflammatory response. This chapter summarizes the many well-known and novel functional aspects of human mast cell biology and emphasizes their unique role in the inflammatory response.


Clinical and Molecular Allergy | 2006

Intestinal strongyloidiasis and hyperinfection syndrome

Raja Sekhar Vadlamudi; David S. Chi; Guha Krishnaswamy

In spite of recent advances with experiments on animal models, strongyloidiasis, an infection caused by the nematode parasite Strongyloides stercoralis, has still been an elusive disease. Though endemic in some developing countries, strongyloidiasis still poses a threat to the developed world. Due to the peculiar but characteristic features of autoinfection, hyperinfection syndrome involving only pulmonary and gastrointestinal systems, and disseminated infection with involvement of other organs, strongyloidiasis needs special attention by the physician, especially one serving patients in areas endemic for strongyloidiasis. Strongyloidiasis can occur without any symptoms, or as a potentially fatal hyperinfection or disseminated infection. Th2 cell-mediated immunity, humoral immunity and mucosal immunity have been shown to have protective effects against this parasitic infection especially in animal models. Any factors that suppress these mechanisms (such as intercurrent immune suppression or glucocorticoid therapy) could potentially trigger hyperinfection or disseminated infection which could be fatal. Even with the recent advances in laboratory tests, strongyloidiasis is still difficult to diagnose. But once diagnosed, the disease can be treated effectively with antihelminthic drugs like Ivermectin. This review article summarizes a case of strongyloidiasis and various aspects of strongyloidiasis, with emphasis on epidemiology, life cycle of Strongyloides stercoralis, clinical manifestations of the disease, corticosteroids and strongyloidiasis, diagnostic aspects of the disease, various host defense pathways against strongyloidiasis, and available treatment options.


Endothelium-journal of Endothelial Cell Research | 2000

The Effects of HIV Infection on Endothelial Function

David S. Chi; Jason L. Henry; Jim Kelley; Rebecca Thorpe; John Kelly Smith; Guha Krishnaswamy

Endothelial dysfunction and/or injury is pivotal to the development of cardiovascular and inflammatory pathology. Endothelial dysfunction and/or injury has been described in Human Immunodeficiency Virus (HIV) infection. Elaboration of circulating markers of endothelial activation, such as soluble adhesion molecules and procoagulant proteins, occurs in HIV infection. Certain endothelial cells, such as those lining liver sinusoids, human umbilical vein endothelial cells, bone marrow stromal endothelial cells or brain microvascular endothelial cells, have been shown to be variably permissive for HIV infection. Entry of virus into endothelial cells may occur via CD4 antigen or galactosyl-ceramide receptors. Other mechanisms of entry including chemokine receptors have been proposed. Nevertheless, endothelial activation may also occur in HIV infection either by cytokines secreted in response to mononuclear or adventitial cell activation by virus or else by the effects of the secreted HIV-associated proteins, gp 120 (envelope glycoprotein) and Tat (transactivator of viral replication) on endothelium. Enhanced adhesiveness of endothelial cells, endothelial cell proliferation and apoptosis as well as activation of cytokine secretion have all been demonstrated. Synergy between select inflammatory cytokines and viral proteins in inducing endothelial injury has been shown. In HIV infection, dysfunctional or injured endothelial cells potentiate tissue injury, inflammation and remodeling, and accelerate the development of cardiovascular disease.


Clinical and Molecular Allergy | 2007

Baicalein inhibits IL-1β- and TNF-α-induced inflammatory cytokine production from human mast cells via regulation of the NF-κB pathway

Chia-Jung Hsieh; Kenton Hall; Tuanzhu Ha; Chuanfu Li; Guha Krishnaswamy; David S. Chi

BackgroundHuman mast cells are multifunctional cells capable of a wide variety of inflammatory responses. Baicalein (BAI), isolated from the traditional Chinese herbal medicine Huangqin (Scutellaria baicalensis Georgi), has been shown to have anti-inflammatory effects. We examined its effects and mechanisms on the expression of inflammatory cytokines in an IL-1β- and TNF-α-activated human mast cell line, HMC-1.MethodsHMC-1 cells were stimulated either with IL-1β (10 ng/ml) or TNF-α (100 U/ml) in the presence or absence of BAI. We assessed the expression of IL-6, IL-8, and MCP-1 by ELISA and RT-PCR, NF-κB activation by electrophoretic mobility shift assay (EMSA), and IκBα activation by Western blot.ResultsBAI (1.8 to 30 μM) significantly inhibited production of IL-6, IL-8, and MCP-1 in a dose-dependent manner in IL-1β-activated HMC-1. BAI (30 μM) also significantly inhibited production of IL-6, IL-8, and MCP-1 in TNF-α-activated HMC-1. Inhibitory effects appear to involve the NF-κB pathway. BAI inhibited NF-κB activation in IL-1β- and TNF-α-activated HMC-1. Furthermore, BAI increased cytoplasmic IκBα proteins in IL-1β- and TNF-α-activated HMC-1.ConclusionOur results showed that BAI inhibited the production of inflammatory cytokines through inhibition of NF-κB activation and IκBα phosphorylation and degradation in human mast cells. This inhibitory effect of BAI on the expression of inflammatory cytokines suggests its usefulness in the development of novel anti-inflammatory therapies.


Nitric Oxide | 2003

Regulation of nitric oxide production from macrophages by lipopolysaccharide and catecholamines

David S. Chi; Min Qui; Guha Krishnaswamy; Chuanfu Li; William L. Stone

Catecholamines are elaborated in stress responses to mediate vasoconstriction, and elevate systemic vascular resistance and blood pressure. They are elaborated in disorders such as sepsis, cocaine abuse, and cardiovascular disease. The aim of the study was to determine whether catecholamines affect nitric oxide (NO) production, as NO is a vasodilator and counteracts the harmful effects of catecholamines. RAW264.7 macrophage cells were cultured with lipopolysaccharide (LPS)+/-epinephrine, norepinephrine, and dopamine at 5x10(-6)M concentrations for 24h. Supernatants were harvested for measuring NO by spectrophotometry using the Greiss reagent and cells were harvested for detecting inducible NO synthase (iNOS) by Western blot. NO production in RAW 264.7 macrophages was increased significantly by addition of LPS (0.5-10ng/ml) in a dose-dependent fashion. The NO production induced by LPS was further enhanced by epinephrine and norepinephrine, and to a lesser extent by dopamine. These increases in NO correlated with expression of iNOS protein in these cells. The enhancing effect of iNOS synthesis by epinephrine and norepinephrine on LPS-induced macrophages was down regulated by beta-adrenoceptor antagonist, propranolol, and dexamethasone. The results suggest that catecholamines have a synergic effect on LPS in induction of iNOS synthesis and NO production, and this may mediate some of the vascular effects of infection. These data support a novel role for catecholamines in disorders such as septic shock and cocaine use, and indicate that beta-adrenoceptor antagonists and glucocorticoids may be used therapeutically for modulation of the catecholamine-NO axis in disease states.


Molecular Medicine Today | 2000

The molecular role of mast cells in atherosclerotic cardiovascular disease

Jim Kelley; David S. Chi; Wael Abou-Auda; J. Kelly Smith; Guha Krishnaswamy

Human atherosclerosis has many characteristics of an inflammatory disorder. Recent data suggest that mast cells might be important in the pathogenesis of atherosclerotic disease. By secretion of pro-inflammatory cytokines, mast cells can assist in the recruitment of monocytes and lymphocytes into vascular tissue, thereby propagating the inflammatory response. Mast cell enzymes might activate pro-metalloproteinases, thereby destabilizing atheromatous plaques. Mast cells can facilitate foam cell formation by promoting cholesterol accumulation. However, mast cell tryptase could slow thrombus formation at sites of plaque rupture by interfering with coagulation. Therefore, mast cells can modulate coronary artery disease by both facilitatory and inhibitory pathways.


Clinical and Molecular Allergy | 2008

Incense smoke: clinical, structural and molecular effects on airway disease

Ta-Chang Lin; Guha Krishnaswamy; David S. Chi

In Asian countries where the Buddhism and Taoism are mainstream religions, incense burning is a daily practice. A typical composition of stick incense consists of 21% (by weight) of herbal and wood powder, 35% of fragrance material, 11% of adhesive powder, and 33% of bamboo stick. Incense smoke (fumes) contains particulate matter (PM), gas products and many organic compounds. On average, incense burning produces particulates greater than 45 mg/g burned as compared to 10 mg/g burned for cigarettes. The gas products from burning incense include CO, CO2, NO2, SO2, and others. Incense burning also produces volatile organic compounds, such as benzene, toluene, and xylenes, as well as aldehydes and polycyclic aromatic hydrocarbons (PAHs). The air pollution in and around various temples has been documented to have harmful effects on health. When incense smoke pollutants are inhaled, they cause respiratory system dysfunction. Incense smoke is a risk factor for elevated cord blood IgE levels and has been indicated to cause allergic contact dermatitis. Incense smoke also has been associated with neoplasm and extracts of particulate matter from incense smoke are found to be mutagenic in the Ames Salmonella test with TA98 and activation. In order to prevent airway disease and other health problem, it is advisable that people should reduce the exposure time when they worship at the temple with heavy incense smokes, and ventilate their house when they burn incense at home.

Collaboration


Dive into the David S. Chi's collaboration.

Top Co-Authors

Avatar

Guha Krishnaswamy

East Tennessee State University James H. Quillen College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Chuanfu Li

East Tennessee State University

View shared research outputs
Top Co-Authors

Avatar

Eapen Thomas

East Tennessee State University

View shared research outputs
Top Co-Authors

Avatar

Donald A. Ferguson

East Tennessee State University

View shared research outputs
Top Co-Authors

Avatar

Kenton Hall

East Tennessee State University

View shared research outputs
Top Co-Authors

Avatar

S. Matthew Fitzgerald

East Tennessee State University

View shared research outputs
Top Co-Authors

Avatar

George A. Youngberg

East Tennessee State University

View shared research outputs
Top Co-Authors

Avatar

John Kelly Smith

East Tennessee State University

View shared research outputs
Top Co-Authors

Avatar

Tuanzhu Ha

East Tennessee State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge