Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David S. Ebert is active.

Publication


Featured researches published by David S. Ebert.


ieee visualization | 2000

Volume illustration: non-photorealistic rendering of volume models

David S. Ebert; Penny Rheingans

Accurately and automatically conveying the structure of a volume model is a problem that has not been fully solved by existing volume rendering approaches. Physics-based volume rendering approaches create images which may match the appearance of translucent materials in nature but may not embody important structural details. Transfer function approaches allow flexible design of the volume appearance but generally require substantial hand-tuning for each new data set in order to be effective. We introduce the volume illustration approach, combining the familiarity of a physics-based illumination model with the ability to enhance important features using non-photorealistic rendering techniques. Since the features to be enhanced are defined on the basis of local volume characteristics rather than volume sample values, the application of volume illustration techniques requires less manual tuning than the design of a good transfer function. Volume illustration provides a flexible unified framework for enhancing structural perception of volume models through the amplification of features and the addition of illumination effects.


IEEE Journal of Selected Topics in Signal Processing | 2010

The Use of Mobile Devices in Aiding Dietary Assessment and Evaluation

Fengqing Zhu; Marc Bosch; Insoo Woo; SungYe Kim; Carol J. Boushey; David S. Ebert; Edward J. Delp

There is a growing concern about chronic diseases and other health problems related to diet including obesity and cancer. The need to accurately measure diet (what foods a person consumes) becomes imperative. Dietary intake provides valuable insights for mounting intervention programs for prevention of chronic diseases. Measuring accurate dietary intake is considered to be an open research problem in the nutrition and health fields. In this paper, we describe a novel mobile telephone food record that will provide an accurate account of daily food and nutrient intake. Our approach includes the use of image analysis tools for identification and quantification of food that is consumed at a meal. Images obtained before and after foods are eaten are used to estimate the amount and type of food consumed. The mobile device provides a unique vehicle for collecting dietary information that reduces the burden on respondents that are obtained using more classical approaches for dietary assessment. We describe our approach to image analysis that includes the segmentation of food items, features used to identify foods, a method for automatic portion estimation, and our overall system architecture for collecting the food intake information.


European Journal of Clinical Nutrition | 2009

Use of technology in children’s dietary assessment

Carol J. Boushey; Deborah A. Kerr; Janine Wright; Kyle Lutes; David S. Ebert; Edward J. Delp

Background:Information on dietary intake provides some of the most valuable insights for mounting intervention programmes for the prevention of chronic diseases. With the growing concern about adolescent overweight, the need to accurately measure diet becomes imperative. Assessment among adolescents is problematic as this group has irregular eating patterns and they have less enthusiasm for recording food intake.Subjects/Methods:We used qualitative and quantitative techniques among adolescents to assess their preferences for dietary assessment methods.Results:Dietary assessment methods using technology, for example, a personal digital assistant (PDA) or a disposable camera, were preferred over the pen and paper food record.Conclusions:There was a strong preference for using methods that incorporate technology such as capturing images of food. This suggests that for adolescents, dietary methods that incorporate technology may improve cooperation and accuracy. Current computing technology includes higher resolution images, improved memory capacity and faster processors that allow small mobile devices to process information not previously possible. Our goal is to develop, implement and evaluate a mobile device (for example, PDA, mobile phone) food record that will translate to an accurate account of daily food and nutrient intake among adolescents. This mobile computing device will include digital images, a nutrient database and image analysis for identification and quantification of food consumption. Mobile computing devices provide a unique vehicle for collecting dietary information that reduces the burden on record keepers. Images of food can be marked with a variety of input methods that link the item for image processing and analysis to estimate the amount of food. Images before and after the foods are eaten can estimate the amount of food consumed. The initial stages and potential of this project will be described.


international conference on computer graphics and interactive techniques | 1990

Rendering and animation of gaseous phenomena by combining fast volume and scanline A-buffer techniques

David S. Ebert; Richard E. Parent

This paper describes a new technique that efficiently combines volume rendering and scanline a-buffer techniques. This technique is useful for combining all types of volume-rendered objects with scanline rendered objects and is especially useful for rendering scenes containing gaseous phenomena such as clouds, fog, and smoke. The rendering and animation of these phenomena has been a difficult problem in computer graphics.A new algorithm for realistically modeling and animating gaseous phenomena is presented, providing true three-dimensional volumes of gas. The gases are modeled using turbulent flow based solid texturing to define their geometry and are animated based on turbulent flow simulations. A low albedo illumination model is used that takes into consideration self-shadowing of the volumes.


IEEE Transactions on Visualization and Computer Graphics | 2001

Volume illustration: nonphotorealistic rendering of volume models

Penny Rheingans; David S. Ebert

Accurately and automatically conveying the structure of a volume model is a problem which has not been fully solved by existing volume rendering approaches. Physics-based volume rendering approaches create images which may match the appearance of translucent materials in nature but may not embody important structural details. Transfer function approaches allow flexible design of the volume appearance but generally require substantial hand-tuning for each new data set in order to be effective. We introduce the volume illustration approach, combining the familiarity of a physics-based illumination model with the ability to enhance important features using non-photorealistic rendering techniques. Since the features to be enhanced are defined on the basis of local volume characteristics rather than volume sample values, the application of volume illustration techniques requires less manual tuning than the design of a good transfer function. Volume illustration provides a flexible unified framework for enhancing the structural perception of volume models through the amplification of features and the addition of illumination effects.


ieee visualization | 2002

Interactive translucent volume rendering and procedural modeling

Joe Kniss; Simon Premoze; Charles D. Hansen; David S. Ebert

Direct volume rendering is a commonly used technique in visualization applications. Many of these applications require sophisticated shading models to capture subtle lighting effects and characteristics of volumetric data and materials. Many common objects and natural phenomena exhibit visual quality that cannot be captured using simple lighting models or cannot be solved at interactive rates using more sophisticated methods. We present a simple yet effective interactive shading model which captures volumetric light attenuation effects to produce volumetric shadows and the subtle appearance of translucency. We also present a technique for volume displacement or perturbation that allows realistic interactive modeling of high frequency detail for real and synthetic volumetric data.


visual analytics science and technology | 2012

Spatiotemporal social media analytics for abnormal event detection and examination using seasonal-trend decomposition

Junghoon Chae; Dennis Thom; Harald Bosch; Yun Jang; Ross Maciejewski; David S. Ebert; Thomas Ertl

Recent advances in technology have enabled social media services to support space-time indexed data, and internet users from all over the world have created a large volume of time-stamped, geo-located data. Such spatiotemporal data has immense value for increasing situational awareness of local events, providing insights for investigations and understanding the extent of incidents, their severity, and consequences, as well as their time-evolving nature. In analyzing social media data, researchers have mainly focused on finding temporal trends according to volume-based importance. Hence, a relatively small volume of relevant messages may easily be obscured by a huge data set indicating normal situations. In this paper, we present a visual analytics approach that provides users with scalable and interactive social media data analysis and visualization including the exploration and examination of abnormal topics and events within various social media data sources, such as Twitter, Flickr and YouTube. In order to find and understand abnormal events, the analyst can first extract major topics from a set of selected messages and rank them probabilistically using Latent Dirichlet Allocation. He can then apply seasonal trend decomposition together with traditional control chart methods to find unusual peaks and outliers within topic time series. Our case studies show that situational awareness can be improved by incorporating the anomaly and trend examination techniques into a highly interactive visual analysis process.


Journal of Medical Internet Research | 2012

Novel Technologies for Assessing Dietary Intake: Evaluating the Usability of a Mobile Telephone Food Record Among Adults and Adolescents

Bethany L Daugherty; TusaRebecca E. Schap; Reynolette Ettienne-Gittens; Fengqing Zhu; Marc Bosch; Edward J. Delp; David S. Ebert; Deborah A. Kerr; Carol J. Boushey

Background The development of a mobile telephone food record has the potential to ameliorate much of the burden associated with current methods of dietary assessment. When using the mobile telephone food record, respondents capture an image of their foods and beverages before and after eating. Methods of image analysis and volume estimation allow for automatic identification and volume estimation of foods. To obtain a suitable image, all foods and beverages and a fiducial marker must be included in the image. Objective To evaluate a defined set of skills among adolescents and adults when using the mobile telephone food record to capture images and to compare the perceptions and preferences between adults and adolescents regarding their use of the mobile telephone food record. Methods We recruited 135 volunteers (78 adolescents, 57 adults) to use the mobile telephone food record for one or two meals under controlled conditions. Volunteers received instruction for using the mobile telephone food record prior to their first meal, captured images of foods and beverages before and after eating, and participated in a feedback session. We used chi-square for comparisons of the set of skills, preferences, and perceptions between the adults and adolescents, and McNemar test for comparisons within the adolescents and adults. Results Adults were more likely than adolescents to include all foods and beverages in the before and after images, but both age groups had difficulty including the entire fiducial marker. Compared with adolescents, significantly more adults had to capture more than one image before (38% vs 58%, P = .03) and after (25% vs 50%, P = .008) meal session 1 to obtain a suitable image. Despite being less efficient when using the mobile telephone food record, adults were more likely than adolescents to perceive remembering to capture images as easy (P < .001). Conclusions A majority of both age groups were able to follow the defined set of skills; however, adults were less efficient when using the mobile telephone food record. Additional interactive training will likely be necessary for all users to provide extra practice in capturing images before entering a free-living situation. These results will inform age-specific development of the mobile telephone food record that may translate to a more accurate method of dietary assessment.


ieee visualization | 2002

Non-photorealistic volume rendering using stippling techniques

Aidong Lu; Christopher J. Morris; David S. Ebert; Penny Rheingans; Charles D. Hansen

Simulating hand-drawn illustration techniques can succinctly express information in a manner that is communicative and informative. We present a framework for an interactive direct volume illustration system that simulates traditional stipple drawing. By combining the principles of artistic and scientific illustration, we explore several feature enhancement techniques to create effective, interactive visualizations of scientific and medical datasets. We also introduce a rendering mechanism that generates appropriate point lists at all resolutions during an automatic preprocess, and modifies rendering styles through different combinations of these feature enhancements. The new system is an effective way to interactively preview large, complex volume datasets in a concise, meaningful, and illustrative manner. Volume stippling is effective for many applications and provides a quick and efficient method to investigate volume models.


IEEE Transactions on Visualization and Computer Graphics | 2010

A Visual Analytics Approach to Understanding Spatiotemporal Hotspots

Ross Maciejewski; Stephen Rudolph; Ryan P. Hafen; Ahmad M. Abusalah; Mohamed Yakout; Mourad Ouzzani; William S. Cleveland; Shaun J. Grannis; David S. Ebert

As data sources become larger and more complex, the ability to effectively explore and analyze patterns among varying sources becomes a critical bottleneck in analytic reasoning. Incoming data contain multiple variables, high signal-to-noise ratio, and a degree of uncertainty, all of which hinder exploration, hypothesis generation/exploration, and decision making. To facilitate the exploration of such data, advanced tool sets are needed that allow the user to interact with their data in a visual environment that provides direct analytic capability for finding data aberrations or hotspots. In this paper, we present a suite of tools designed to facilitate the exploration of spatiotemporal data sets. Our system allows users to search for hotspots in both space and time, combining linked views and interactive filtering to provide users with contextual information about their data and allow the user to develop and explore their hypotheses. Statistical data models and alert detection algorithms are provided to help draw user attention to critical areas. Demographic filtering can then be further applied as hypotheses generated become fine tuned. This paper demonstrates the use of such tools on multiple geospatiotemporal data sets.

Collaboration


Dive into the David S. Ebert's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kelly P. Gaither

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge