Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David S. Ginger is active.

Publication


Featured researches published by David S. Ginger.


Science | 2015

Impact of microstructure on local carrier lifetime in perovskite solar cells

Dane de Quilettes; Sarah M. Vorpahl; Samuel D. Stranks; Hirokazu Nagaoka; Giles E. Eperon; Mark E. Ziffer; Henry J. Snaith; David S. Ginger

Going toward the grains Great strides have been made in improving the efficiency of organic-inorganic perovskite solar cells. Further improvements are likely to depend on understanding the role of film morphology on charge-carrier dynamics. de Quilettes et al. correlated confocal fluorescence microscopy images with those from scanning electron microscopy to spatially resolve the photoluminescence and carrier decay dynamics from films of organic-inorganic perovskites. Carrier lifetimes varied widely even between grains, and chemical treatments could improve lifetimes Science, this issue p. 683 Carrier dynamics in organic-inorganic perovskites are probed with confocal fluorescence and scanning electron microscopies. The remarkable performance of hybrid perovskite photovoltaics is attributed to their long carrier lifetimes and high photoluminescence (PL) efficiencies. High-quality films are associated with slower PL decays, and it has been claimed that grain boundaries have a negligible impact on performance. We used confocal fluorescence microscopy correlated with scanning electron microscopy to spatially resolve the PL decay dynamics from films of nonstoichiometric organic-inorganic perovskites, CH3NH3PbI3(Cl). The PL intensities and lifetimes varied between different grains in the same film, even for films that exhibited long bulk lifetimes. The grain boundaries were dimmer and exhibited faster nonradiative decay. Energy-dispersive x-ray spectroscopy showed a positive correlation between chlorine concentration and regions of brighter PL, whereas PL imaging revealed that chemical treatment with pyridine could activate previously dark grains.


Advanced Materials | 2015

High-Performance and Environmentally Stable Planar Heterojunction Perovskite Solar Cells Based on a Solution-Processed Copper-Doped Nickel Oxide Hole-Transporting Layer

Jong H. Kim; Po-Wei Liang; Spencer T. Williams; Namchul Cho; Chu-Chen Chueh; Micah S. Glaz; David S. Ginger; Alex K.-Y. Jen

An effective approach to significantly increase the electrical conductivity of a NiOx hole-transporting layer (HTL) to achieve high-efficiency planar heterojunction perovskite solar cells is demonstrated. Perovskite solar cells based on using Cu-doped NiOx HTL show a remarkably improved power conversion efficiency up to 15.40% due to the improved electrical conductivity and enhanced perovskite film quality. General applicability of Cu-doped NiOx to larger bandgap perovskites is also demonstrated in this study.


Nano Letters | 2010

Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms.

Abhishek P. Kulkarni; Kevin M. Noone; Keiko Munechika; Samuel R. Guyer; David S. Ginger

We use photoinduced absorption spectroscopy to measure long-lived photogenerated charge carriers in optically thin donor/acceptor conjugated polymer blend films near plasmon-resonant silver nanoprisms. We measure up to 3 times more charge generation, as judged by the magnitude of the polaron absorption signal, in 35 nm thin blend films of poly(3-hexylthiophene)/phenyl-C(61)-butyric acid methyl ester on top of films of silver nanoprisms (approximately 40-100 nm edge length). We find that the polaron yields increase linearly with the total sample extinction. These excitation enhancements could in principle be used to increase photocurrents in thin organic solar cells.


Nature | 2013

The role of spin in the kinetic control of recombination in organic photovoltaics

Akshay Rao; Philip C. Y. Chow; Simon Gélinas; Cody W. Schlenker; Chang-Zhi Li; Hin-Lap Yip; Alex K.-Y. Jen; David S. Ginger; Richard H. Friend

In biological complexes, cascade structures promote the spatial separation of photogenerated electrons and holes, preventing their recombination. In contrast, the photogenerated excitons in organic photovoltaic cells are dissociated at a single donor–acceptor heterojunction formed within a de-mixed blend of the donor and acceptor semiconductors. The nanoscale morphology and high charge densities give a high rate of electron–hole encounters, which should in principle result in the formation of spin-triplet excitons, as in organic light-emitting diodes. Although organic photovoltaic cells would have poor quantum efficiencies if every encounter led to recombination, state-of-the-art examples nevertheless demonstrate near-unity quantum efficiency. Here we show that this suppression of recombination arises through the interplay between spin, energetics and delocalization of electronic excitations in organic semiconductors. We use time-resolved spectroscopy to study a series of model high-efficiency polymer–fullerene systems in which the lowest-energy molecular triplet exciton (T1) for the polymer is lower in energy than the intermolecular charge transfer state. We observe the formation of T1 states following bimolecular recombination, indicating that encounters of spin-uncorrelated electrons and holes generate charge transfer states with both spin-singlet (1CT) and spin-triplet (3CT) characters. We show that the formation of triplet excitons can be the main loss mechanism in organic photovoltaic cells. But we also find that, even when energetically favoured, the relaxation of 3CT states to T1 states can be strongly suppressed by wavefunction delocalization, allowing for the dissociation of 3CT states back to free charges, thereby reducing recombination and enhancing device performance. Our results point towards new design rules both for photoconversion systems, enabling the suppression of electron–hole recombination, and for organic light-emitting diodes, avoiding the formation of triplet excitons and enhancing fluorescence efficiency.


Advanced Materials | 2014

Suppressed Charge Recombination in Inverted Organic Photovoltaics via Enhanced Charge Extraction by Using a Conductive Fullerene Electron Transport Layer

Chang-Zhi Li; Chih-Yu Chang; Yue Zang; Huanxin Ju; Chu-Chen Chueh; Po-Wei Liang; Namchul Cho; David S. Ginger; Alex K.-Y. Jen

Conductive fullerene electron-transporting layers (ETLs) are developed to facilitate the solution processing of highly efficient inverted OSCs with power conversion efficiency (PCE) reaching 9.6%. Its high conductivity also allows devices to be fabricated independently of the ETL thickness (up to ca. 50 nm). Transient photovoltage (TPV) measurements are used to shed light on how these conductive ETLs help suppress charge recombination in solar cells.


Journal of the American Chemical Society | 2010

Plasmonic Nanoparticle Dimers for Optical Sensing of DNA in Complex Media

Jennifer I. L. Chen; Yeechi Chen; David S. Ginger

We introduce a new sensing modality based on the actuation of discrete gold nanoparticle dimers. Binding of the target DNA leads to a geometrical extension of the dimer, thereby yielding a spectral blue shift in the hybridized plasmon mode as detected by single nanostructure scattering spectroscopy. The magnitude and opposite direction of this shift enabled us to spectroscopically distinguish the target from nonspecific binding and to detect the target in complex media like serum.


ACS Nano | 2010

Polymer Nanowire/Fullerene Bulk Heterojunction Solar Cells: How Nanostructure Determines Photovoltaic Properties

Hao Xin; Obadiah G. Reid; Guoqiang Ren; Felix Sunjoo Kim; David S. Ginger; Samson A. Jenekhe

We report studies of bulk heterojunction solar cells composed of self-assembled poly(3-butylthiophene) nanowires (P3BT-nw) as the donor component with a fullerene acceptor. We show that the nanostructure of these devices is the single most important variable determining their performance, and we use a combination of solvent and thermal annealing to control it. A combination of conductive and photoconductive atomic force microscopy provides direct connections between local nanostructure and overall device performance. Films with a dense random web of nanowires cause the fullerene to aggregate in the interstices, giving a quasi-ordered interpenetrating heterojunction with high short-circuit current density (10.58 mA/cm(2)), but relatively low open circuit voltage (520 mV). Films with a low density of nanowires result in a random bulk heterojunction composed of small crystalline PCBM and P3BT phases. Fewer nanowires result in higher open circuit voltage (650 mV) but lower current density (6.02 mA/cm(2)). An average power conversion efficiency of 3.35% was achieved in a structure which balances these factors, with intermediate nanowire density. The best photovoltaic performance would be realized in a material structure which maintains the interpenetrating network of nanowires and fullerene phases (high current density), but avoids the device bridging we observe, and the recombination and shunt losses associated with it (high open-circuit voltage).


ACS Nano | 2009

The Role of Mesoscopic PCBM Crystallites in Solvent Vapor Annealed Copolymer Solar Cells

Tricia Bull; Liam S. C. Pingree; Samson A. Jenekhe; David S. Ginger; Christine K. Luscombe

Solution processable methanofullerene-based solar cells are the most widely studied class of organic photovoltaics (OPVs). The evolution of the electronic properties with solvent vapor annealing (SVA) in polyfluorene-copolymer and [6,6]phenyl-C61-butyric acid methyl ester (PCBM) blended OPVs is studied using various scanning probe techniques: light beam induced current spectroscopy (LBIC), conductive atomic force microscopy (c-AFM), and photoconductive AFM (pc-AFM). We demonstrate that SVA improves the power conversion efficiency by 40% while forming mesoscopic PCBM crystallites and a approximately 3 nm copolymer-rich overlayer at the cathode interface. We find that the large crystallites created during annealing do not directly improve the local performance of the device, but instead attribute the performance improvement to the ripened blend morphology and an increase in the hole mobility of the copolymer in comparison to the unannealed blend. The PCBM-rich aggregates act as a sink for excess PCBM, although excess PCBM is initially required to form the appropriate structural features prior to the annealing process.


Nano Letters | 2008

Space Charge Limited Current Measurements on Conjugated Polymer Films using Conductive Atomic Force Microscopy

Obadiah G. Reid; Keiko Munechika; David S. Ginger

We describe local (~150 nm resolution), quantitative measurements of charge carrier mobility in conjugated polymer films that are commonly used in thin-film transistors and nanostructured solar cells. We measure space charge limited currents (SCLC) through these films using conductive atomic force microscopy (c-AFM) and in macroscopic diodes. The current densities we measure with c-AFM are substantially higher than those observed in planar devices at the same bias. This leads to an overestimation of carrier mobility by up to 3 orders of magnitude when using the standard Mott-Gurney law to fit the c-AFM data. We reconcile this apparent discrepancy between c-AFM and planar device measurements by accounting for the proper tip-sample geometry using finite element simulations of tip-sample currents. We show that a semiempirical scaling factor based on the ratio of the tip contact area diameter to the sample thickness can be used to correct c-AFM current-voltage curves and thus extract mobilities that are in good agreement with values measured in the conventional planar device geometry.


Energy and Environmental Science | 2016

Efficient perovskite solar cells by metal ion doping

Jacob Tse-Wei Wang; Zhiping Wang; Sandeep Pathak; Wei Zhang; Dane W. deQuilettes; Florencia Wisnivesky-Rocca-Rivarola; Jian Huang; Pabitra K. Nayak; Jay B. Patel; Hanis A. Mohd Yusof; Yana Vaynzof; Rui Zhu; Ivan Ramirez; Jin Zhang; Caterina Ducati; C.R.M. Grovenor; Michael B. Johnston; David S. Ginger; R. J. Nicholas; Henry J. Snaith

Realizing the theoretical limiting power conversion efficiency (PCE) in perovskite solar cells requires a better understanding and control over the fundamental loss processes occurring in the bulk of the perovskite layer and at the internal semiconductor interfaces in devices. One of the main challenges is to eliminate the presence of charge recombination centres throughout the film which have been observed to be most densely located at regions near the grain boundaries. Here, we introduce aluminium acetylacetonate to the perovskite precursor solution, which improves the crystal quality by reducing the microstrain in the polycrystalline film. At the same time, we achieve a reduction in the non-radiative recombination rate, a remarkable improvement in the photoluminescence quantum efficiency (PLQE) and a reduction in the electronic disorder deduced from an Urbach energy of only 12.6 meV in complete devices. As a result, we demonstrate a PCE of 19.1% with negligible hysteresis in planar heterojunction solar cells comprising all organic p and n-type charge collection layers. Our work shows that an additional level of control of perovskite thin film quality is possible via impurity cation doping, and further demonstrates the continuing importance of improving the electronic quality of the perovskite absorber and the nature of the heterojunctions to further improve the solar cell performance.

Collaboration


Dive into the David S. Ginger's collaboration.

Top Co-Authors

Avatar

Alex K.-Y. Jen

City University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

V. E. Viola

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. Cornell

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

G. Wang

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge