David S. H. Chu
University of Washington
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David S. H. Chu.
Accounts of Chemical Research | 2012
David S. H. Chu; Joan G. Schellinger; Julie Shi; Anthony J. Convertine; Patrick S. Stayton; Suzie H. Pun
Therapeutic gene delivery can alter protein function either through the replacement of nonfunctional genes to restore cellular health or through RNA interference (RNAi) to mask mutated and harmful genes. Researchers have investigated a range of nucleic acid-based therapeutics as potential treatments for hereditary, acquired, and infectious diseases. Candidate drugs include plasmids that induce gene expression and small, interfering RNAs (siRNAs) that silence target genes. Because of their self-assembly with nucleic acids into virus-sized nanoparticles and high transfection efficiency in vitro, cationic polymers have been extensively studied for nucleic acid delivery applications, but toxicity and particle stability have limited the clinical applications of these systems. The advent of living free radical polymerization has improved the quality, control, and reproducibility of these synthesized materials. This process yields well-defined, narrowly disperse materials with designed architectures and molecular weights. As a result, researchers can study the effects of polymer architecture and molecular weight on transfection efficiency and cytotoxicity, which will improve the design of next-generation vectors. In this Account, we review findings from structure-function studies that have elucidated key design motifs necessary for the development of effective nucleic acid vectors. Researchers have used robust methods such as atom transfer radical polymerization (ATRP), reverse addition-fragmentation chain transfer polymerization (RAFT), and ring-opening metastasis polymerization (ROMP) to engineer materials that enhance extracellular stability and cellular specificity and decrease toxicity. In addition, we discuss polymers that are biodegradable, form supramolecular structures, target specific cells, or facilitate endosomal release. Finally, we describe promising materials with a range of in vivo applications from pulmonary gene delivery to DNA vaccines.
Angewandte Chemie | 2013
Hua Wei; Lisa R. Volpatti; Drew L. Sellers; Don O. Maris; Ian W. Andrews; Ashton S. Hemphill; Leslie W. Chan; David S. H. Chu; Philip J. Horner; Suzie H. Pun
Nucleic acid-based therapeutics, including plasmid DNA (pDNA) and small interfering RNA (siRNA), have been considered highly promising strategies to treat a gamut of diseases.[1] Successful nucleic acid delivery relies on the development of safe and efficient delivery vectors. Viral vectors have dominated as the delivery vehicles used in clinical trials but their progress has been hampered by their immunogenicity, safety risks and high manufacturing cost.[2] Therefore, the use of non-viral vectors such as cationic polymer-based vectors that offer advantages over viral vectors in these aspects has attracted broad attention.[3-4]
Journal of Controlled Release | 2011
Russell N. Johnson; David S. H. Chu; Julie Shi; Joan G. Schellinger; Peter M. Carlson; Suzie H. Pun
Polycations are one of the most frequently used classes of materials for non-viral gene transfer in vivo. Several studies have demonstrated a sensitive relationship between polymer structure and delivery activity. In this work, we used reverse addition-fragmentation chain transfer (RAFT) polymerization to build a panel of N-(2-hydroxypropyl)methacrylamide (HPMA)-oligolysine copolymers with varying peptide length and polymer molecular weight. The panel was screened for optimal DNA-binding, colloidal stability in salt, high transfection efficiency, and low cytotoxicity. Increasing polyplex stability in PBS correlated with increasing polymer molecular weight and decreasing peptide length. Copolymers containing K(5) and K(10) oligocations transfected cultured cells with significantly higher efficiencies than copolymers of K(15). Four HPMA-oligolysine copolymers were identified that met the desired criteria. Polyplexes formed with these copolymers demonstrated both salt stability and transfection efficiencies on-par with poly(ethylenimine) PEI in cultured cells.
Journal of the American Chemical Society | 2012
Hua Wei; Joan G. Schellinger; David S. H. Chu; Suzie H. Pun
Adaptation of in vitro optimized polymeric gene delivery systems for in vivo use remains a significant challenge. Most in vivo applications require particles that are sterically stabilized, which significantly compromises transfection efficiency of materials shown to be effective in vitro. We present a multifunctional well-defined block copolymer that forms particles useful for cell targeting, reversible shielding, endosomal release, and DNA condensation. We show that targeted and stabilized particles retain transfection efficiencies comparable to the nonstabilized formulations. A novel, double-head agent that combines a reversible addition-fragmentation chain transfer agent and an atom transfer radical polymerization initiator through a disulfide linkage is used to synthesize a well-defined cationic block copolymer containing a hydrophilic oligoethyleneglycol and a tetraethylenepentamine-grafted polycation. This material effectively condenses plasmid DNA into salt-stable particles that deshield under intracellular reducing conditions. In vitro transfection studies show that the reversibly shielded polyplexes afford up to 10-fold higher transfection efficiencies than the analogous stably shielded polymer in four different mammalian cell lines. To compensate for reduced cell uptake caused by the hydrophilic particle shell, a neuron-targeting peptide is further conjugated to the terminus of the block copolymer. Transfection of neuron-like, differentiated PC-12 cells demonstrates that combining both targeting and deshielding in stabilized particles yields formulations that are suitable for in vivo delivery without compromising in vitro transfection efficiency and are thus promising carriers for in vivo gene delivery applications.
Biomaterials | 2013
Joan G. Schellinger; Joshuel A. Pahang; Russell N. Johnson; David S. H. Chu; Drew L. Sellers; Don O. Maris; Anthony J. Convertine; Patrick S. Stayton; Philip J. Horner; Suzie H. Pun
Non-viral gene delivery systems capable of transfecting cells in the brain are critical in realizing the potential impact of nucleic acid therapeutics for diseases of the central nervous system. In this study, the membrane-lytic peptide melittin was incorporated into block copolymers synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. The first block, designed for melittin conjugation, was composed of N-(2-hydroxypropyl)methacrylamide (HPMA) and pyridyl disulfide methacrylamide (PDSMA) and the second block, designed for DNA binding, was composed of oligo-l-lysine (K10) and HPMA. Melittin modified with cysteine at the C-terminus was conjugated to the polymers through the pyridyl disulfide pendent groups via disulfide exchange. The resulting pHgMelbHK10 copolymers are more membrane-lytic than melittin-free control polymers, and efficiently condensed plasmid DNA into salt-stable particles (~100-200 nm). The melittin-modified polymers transfected both HeLa and neuron-like PC-12 cells more efficiently than melittin-free polymers although toxicity associated with the melittin peptide was observed. Optimized formulations containing the luciferase reporter gene were delivered to mouse brain by intraventricular brain injections. Melittin-containing polyplexes produced about 35-fold higher luciferase activity in the brain compared to polyplexes without melittin. Thus, the melittin-containing block copolymers described in this work are promising materials for gene delivery to the brain.
ACS Macro Letters | 2013
Hua Wei; David S. H. Chu; Julia Zhao; Joshuel A. Pahang; Suzie H. Pun
The architecture of polycation gene carriers has been shown to affect both their transfection efficiency and cytotoxicity. This work reports the synthesis of cyclic polycations and their use for gene transfer to mammalian cells. Cyclic poly((2-dimethylamino) ethylmethacrylate) (pDMAEMA) homopolymers of various molecular weights were synthesized by “intrachain”click cyclization of α-alkyne-ω-azide heterodifunctional linear precursors prepared by atom transfer radical polymerization (ATRP). Polymers were characterized by size exclusion chromatography and FT-IR analyses to confirm efficient cyclization and products with low polydispersity. Cyclic polymers formed more compact particles with plasmid DNA compared to linear analogues. Cellular uptake, membrane disruption, and nucleic acid delivery efficiency were determined for all polymers. In general, cyclic polymers complexed and delivered nucleic acids with efficiencies similar to their linear counterparts. Notably, cyclic polymers were less cytotoxic than l...
Journal of Controlled Release | 2012
David S. H. Chu; Russell N. Johnson; Suzie H. Pun
Degradable cationic polymers are desirable for in vivo nucleic acid delivery because they offer significantly decreased toxicity over non-degradable counterparts. Peptide linkers provide chemical stability and high specificity for particular endopeptidases but have not been extensively studied for nucleic acid delivery applications. In this work, enzymatically degradable peptide-HPMA copolymers were synthesized by RAFT polymerization of HPMA with methacrylamido-terminated peptide macromonomers, resulting in polymers with low polydispersity and near quantitative incorporation of peptides. Three peptide-HPMA copolymers were evaluated: (i) pHCathK(10), containing peptides composed of the linker phe-lys-phe-leu (FKFL), a substrate of the endosomal/lysosomal endopeptidase cathepsin B, connected to oligo-(L)-lysine for nucleic acid binding, (ii) pHCath(D)K(10), containing the FKFL linker with oligo-(D)-lysine, and (iii) pH(D)Cath(D)K(10), containing all (D) amino acids. Cathepsin B degraded copolymers pHCathK(10) and pHCath(D)K(10) within 1 h while no degradation of pH(D)Cath(D)K(10) was observed. Polyplexes formed with pHCathK(10) copolymers show DNA release by 4 h of treatment with cathepsin B; comparatively, polyplexes formed with pHCath(D)K(10) and pH(D)Cath(D)K(10) show no DNA release within 8 h. Transfection efficiency in HeLa and NIH/3T3 cells were comparable between the copolymers but pHCathK(10) was less toxic. This work demonstrates the successful application of peptide linkers for degradable cationic polymers and DNA release.
Journal of Controlled Release | 2015
David S. H. Chu; Michael J. Bocek; Julie Shi; Anh Ta; Chayanon Ngambenjawong; Robert C. Rostomily; Suzie H. Pun
Several cationic antimicrobial peptides have been investigated as potential anti-cancer drugs due to their demonstrated selective toxicity towards cancer cells relative to normal cells. For example, intracellular delivery of KLA, a pro-apoptotic peptide, results in toxicity against a variety of cancer cell lines; however, the relatively low activity and small size lead to rapid renal excretion when applied in vivo, limiting its therapeutic potential. In this work, apoptotic peptide-polymer hybrid materials were developed to increase apoptotic peptide activity via multivalent display. Multivalent peptide materials were prepared with comb-like structure by RAFT copolymerization of peptide macromonomers with N-(2-hydroxypropyl) methacrylamide (HPMA). Polymers displayed a GKRK peptide sequence for targeting p32, a protein often overexpressed on the surface of cancer cells, either fused with or as a comonomer to a KLA macromonomer. In three tested cancer cell lines, apoptotic polymers were significantly more cytotoxic than free peptides as evidenced by an order of magnitude decrease in IC50 values for the polymers compared to free peptide. The uptake efficiency and intracellular trafficking of one polymer construct was determined by radiolabeling and subcellular fractionation. Despite their more potent cytotoxic profile, polymeric KLA constructs have poor cellular uptake efficiency (<1%). A significant fraction (20%) of internalized constructs localize with intact mitochondrial fractions. In an effort to increase cellular uptake, polymer amines were converted to guanidines by reaction with O-methylisourea. Guanidinylated polymers disrupted function of isolated mitochondria more than their lysine-based analogs, but overall toxicity was decreased, likely due to inefficient mitochondrial trafficking. Thus, while multivalent KLA polymers are more potent than KLA peptides, these materials can be substantially improved by designing next generation materials with improved cellular internalization and mitochondrial targeting efficiency.
Biomaterials | 2013
David S. H. Chu; Joan G. Schellinger; Michael J. Bocek; Russell N. Johnson; Suzie H. Pun
Targeted gene delivery vectors can enhance cellular specificity and transfection efficiency. We demonstrated previously that conjugation of Tet1, a peptide that binds to the GT1b ganglioside, to polyethylenimine results in preferential transfection of neural progenitor cells in vivo. In this work, we investigate the effect of Tet1 ligand density on gene delivery to neuron-like, differentiated PC-12 cells. A series of statistical, cationic peptide-based polymers containing various amounts (1-5 mol%) of Tet1 were synthesized via one-pot reversible addition-fragmentation chain transfer (RAFT) polymerization by copolymerization of Tet1 and oligo-l-lysine macromonomers with N-(2-hydroxypropyl)methacrylamide (HPMA). When complexed with plasmid DNA, the resulting panel of Tet1-functionalized polymers formed particles with similar particle size as particles formed with untargeted HPMA-oligolysine copolymers. The highest cellular uptake in neuron-like differentiated PC-12 cells was observed using polymers with intermediate Tet1 peptide incorporation. Compared to untargeted polymers, polymers with optimal incorporation of Tet1 increased gene delivery to neuron-like PC-12 cells by over an order of magnitude but had no effect compared to control polymers in transfecting NIH/3T3 control cells.
Biomaterials Science | 2015
David S. H. Chu; Drew L. Sellers; M. J. Bocek; Amanda E. Fischedick; Philip J. Horner; Suzie H. Pun
MMP9-responsive bivalirudin-HPMA copolymers were synthesized for direct, local administration in rat spinal cord contusion injury models. Polymer-conjugated bivalirudin peptides maintained activity while demonstrating enzyme-mediated release upon MMP9 exposure and prolonged release from hyaluronic acid/methylcellulose (HAMC) hydrogels compared to free bivalirudin peptide. Localized administration of bivalirudin copolymers in vivo at the site of rat spinal cord injury decreased cellular proliferation and astrogliosis, suggesting the bivalirudin copolymer and HAMC hydrogel system are a promising therapeutic intervention for reducing immediate inflammatory responses and long term scarring.