David S. Levin
University of Texas Health Science Center at San Antonio
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David S. Levin.
The EMBO Journal | 1998
Alessandra Montecucco; Rossella Rossi; David S. Levin; Ronald K. Gary; Min S. Park; Teresa A. Motycka; Giovanni Ciarrocchi; Antonello Villa; Giuseppe Biamonti; Alan E. Tomkinson
In mammalian cells, DNA replication occurs at discrete nuclear sites termed replication factories. Here we demonstrate that DNA ligase I and the large subunit of replication factor C (RF‐C p140) have a homologous sequence of ∼20 amino acids at their N‐termini that functions as a replication factory targeting sequence (RFTS). This motif consists of two boxes: box 1 contains the sequence IxxFF whereas box 2 is rich in positively charged residues. N‐terminal fragments of DNA ligase I and the RF‐C large subunit that contain the RFTS both interact with proliferating cell nuclear antigen (PCNA) in vitro. Moreover, the RFTS of DNA ligase I and of the RF‐C large subunit is necessary and sufficient for the interaction with PCNA. Both subnuclear targeting and PCNA binding by the DNA ligase I RFTS are abolished by replacement of the adjacent phenylalanine residues within box 1. Since sequences similar to the RFTS/PCNA‐binding motif have been identified in other DNA replication enzymes and in p21CIP1/WAF1, we propose that, in addition to functioning as a DNA polymerase processivity factor, PCNA plays a central role in the recruitment and stable association of DNA replication proteins at replication factories.
Current Biology | 2000
David S. Levin; Allison E. McKenna; Teresa A. Motycka; Yoshihiro Matsumoto; Alan E. Tomkinson
DNA ligase I belongs to a family of proteins that bind to proliferating cell nuclear antigen (PCNA) via a conserved 8-amino-acid motif [1]. Here we examine the biological significance of this interaction. Inactivation of the PCNA-binding site of DNA ligase I had no effect on its catalytic activity or its interaction with DNA polymerase beta. In contrast, the loss of PCNA binding severely compromised the ability of DNA ligase I to join Okazaki fragments. Thus, the interaction between PCNA and DNA ligase I is not only critical for the subnuclear targeting of the ligase, but also for coordination of the molecular transactions that occur during lagging-strand synthesis. A functional PCNA-binding site was also required for the ligase to complement hypersensitivity of the DNA ligase I mutant cell line 46BR.1G1 to monofunctional alkylating agents, indicating that a cytotoxic lesion is repaired by a PCNA-dependent DNA repair pathway. Extracts from 46BR.1G1 cells were defective in long-patch, but not short-patch, base-excision repair (BER). Our results show that the interaction between PCNA and DNA ligase I has a key role in long-patch BER and provide the first evidence for the biological significance of this repair mechanism.
Journal of Biological Chemistry | 1999
Yoshihiro Matsumoto; Kyung Rae Kim; Jerard Hurwitz; Ronald K. Gary; David S. Levin; Alan E. Tomkinson; Min S. Park
An apurinic/apyrimidinic (AP) site is one of the most abundant lesions spontaneously generated in living cells and is also a reaction intermediate in base excision repair. In higher eukaryotes, there are two alternative pathways for base excision repair: a DNA polymerase β-dependent pathway and a proliferating cell nuclear antigen (PCNA)-dependent pathway. Here we have reconstituted PCNA-dependent repair of AP sites with six purified human proteins: AP endonuclease, replication factor C, PCNA, flap endonuclease 1 (FEN1), DNA polymerase δ, and DNA ligase I. The length of nucleotides replaced during the repair reaction (patch size) was predominantly two nucleotides, although longer patches of up to seven nucleotides could be detected. Neither replication protein A nor Ku70/80 enhanced the repair activity in this system. Disruption of the PCNA-binding site of either FEN1 or DNA ligase I significantly reduced efficiency of AP site repair but did not affect repair patch size.
Molecular and Cellular Biology | 1997
Zachary B. Mackey; William Ramos; David S. Levin; Christi A. Walter; John R. McCarrey; Alan E. Tomkinson
Three mammalian genes encoding DNA ligases have been identified. However, the role of each of these enzymes in mammalian DNA metabolism has not been established. In this study, we show that two forms of mammalian DNA ligase III, alpha and beta, are produced by a conserved tissue-specific alternative splicing mechanism involving exons encoding the C termini of the polypeptides. DNA ligase III-alpha cDNA, which encodes a 103-kDa polypeptide, is expressed in all tissues and cells, whereas DNA ligase III-beta cDNA, which encodes a 96-kDa polypeptide, is expressed only in the testis. During male germ cell differentiation, elevated expression of DNA ligase III-beta mRNA is restricted, beginning only in the latter stages of meiotic prophase and ending in the round spermatid stage. In 96-kDa DNA ligase III-beta, the C-terminal 77 amino acids of DNA ligase III-alpha are replaced by a different 17- to 18-amino acid sequence. As reported previously, the 103-kDa DNA ligase III-alpha interacts with the DNA strand break repair protein encoded by the human XRCC1 gene. In contrast, the 96-kDa DNA ligase III-beta does not interact with XRCC1, indicating that DNA ligase III-beta may play a role in cellular functions distinct from the DNA repair pathways involving the DNA ligase III-alpha x XRCC1 complex. The distinct biochemical properties of DNA ligase III-beta, in combination with the tissue- and cell-type-specific expression of DNA ligase III-beta mRNA, suggest that this form of DNA ligase III is specifically involved in the completion of homologous recombination events that occur during meiotic prophase.
Progress in Nucleic Acid Research and Molecular Biology | 2001
Alan E. Tomkinson; Ling Chen; Zhiwan Dong; John B. Leppard; David S. Levin; Zachary B. Mackey; Teresa A. Motycka
Three mammalian genes encoding DNA ligases--LIG1, LIG3, and LIG4--have been identified. Genetic, biochemical, and cell biology studies indicate that the products of each of these genes play a unique role in mammalian DNA metabolism. Interestingly, cell lines deficient in either DNA ligase I (46BR.1G1) or DNA ligase III (EM9) are sensitive to simple alkylating agents. One interpretation of these observations is that DNA ligases I and III participate in functionally distinct base excision repair (BER) subpathways. In support of this idea, extracts from both DNA ligase-deficient cell lines are defective in catalyzing BER in vitro and both DNA ligases interact with other BER proteins. DNA ligase I interacts directly with proliferating cell nuclear antigen (PCNA) and DNA polymerase beta (Pol beta), linking this enzyme with both short-patch and long-patch BER. In somatic cells, DNA ligase III alpha forms a stable complex with the DNA repair protein Xrcc1. Although Xrcc1 has no catalytic activity, it also interacts with Pol beta and poly(ADP-ribose) polymerase (PARP), linking DNA ligase III alpha with BER and single-strand break repair, respectively. Biochemical studies suggest that the majority of short-patch base excision repair events are completed by the DNA ligase III alpha/Xrcc1 complex. Although there is compelling evidence for the participation of PARP in the repair of DNA single-strand breaks, the role of PARP in BER has not been established.
Journal of Biological Chemistry | 2004
Ahmad Utomo; Xianzhi Jiang; Saori Furuta; Jeanho Yun; David S. Levin; Yi-Chun J. Wang; Kartiki Vasant Desai; Jeffrey Green; Phang Lang Chen; Wen-Hwa Lee
A dramatic reduction in the expression of a novel phospholipid hydroperoxide glutathione peroxidase (PHGPx), which incorporates cysteine instead of selenocysteine in the conserved catalytic motif was observed in a microarray analysis using cDNAs amplified from mRNA of Brca1-null mouse embryonic fibroblasts. This non-selenocysteine PHGPx named NPGPx is a cytoplasmic protein with molecular mass of ∼22 kDa and has little detectable glutathione peroxidase activity in vitro. Ectopic expression of NPGPx in Brca1-null cells that were sensitive to oxidative stress induced by hydrogen peroxide conferred a similar resistance level to that of the wild-type cells, suggesting the importance of this protein in reducing oxidative stress. Expression of NPGPx was found in many tissues, including developing mammary gland. However, the majority of breast cancer cell lines studied (11 of 12) expressed very low or undetectable levels of NPGPx irrespective of BRCA1 status. Re-expression of NPGPx in breast cancer lines, MCF-7 and HCC1937, which have very little or no endogenous NPGPx, induced resistance to eicosapentaenoic acid (an omega-3 type of polyunsaturated fatty acid)-mediated cell death. Conversely, inhibition of the expression of NPGPx by the specific small interfering RNA in HS578T breast cancer cells that originally express substantial amounts of endogenous NPGPx increased their sensitivity to eicosapentaenoic acid-mediated cell death. Thus, NPGPx plays an essential role in breast cancer cells in alleviating oxidative stress generated from polyunsaturated fatty acid metabolism.
Journal of Biological Chemistry | 2004
David S. Levin; Sangeetha Vijayakumar; Xiuping Liu; Vladimir P. Bermudez; Jerard Hurwitz; Alan E. Tomkinson
The recruitment of DNA ligase I to replication foci and the efficient joining of Okazaki fragments is dependent on the interaction between DNA ligase I and proliferating cell nuclear antigen (PCNA). Although the PCNA sliding clamp tethers DNA ligase I to nicked duplex DNA circles, the interaction does not enhance DNA joining. This suggests that other factors may be involved in the joining of Okazaki fragments. In this study, we describe an association between replication factor C (RFC), the clamp loader, and DNA ligase I in human cell extracts. Subsequently, we demonstrate that there is a direct physical interaction between these proteins that involves both the N- and C-terminal domains of DNA ligase I, the N terminus of the large RFC subunit p140, and the p36 and p38 subunits of RFC. Although RFC inhibited DNA joining by DNA ligase I, the addition of PCNA alleviated inhibition by RFC. Notably, the effect of PCNA on ligation was dependent on the PCNA-binding site of DNA ligase I. Together, these results provide a molecular explanation for the key in vivo role of the DNA ligase I/PCNA interaction and suggest that the joining of Okazaki fragments is coordinated by pairwise interactions among RFC, PCNA, and DNA ligase I.
Molecular and Cellular Biology | 2009
Sangeetha Vijayakumar; Barbara Dziegielewska; David S. Levin; Wei Song; Jinhu Yin; Austin J. Yang; Yoshihiro Matsumoto; Vladimir P. Bermudez; Jerard Hurwitz; Alan E. Tomkinson
ABSTRACT Human DNA ligase I (hLigI) participates in DNA replication and excision repair via an interaction with proliferating cell nuclear antigen (PCNA), a DNA sliding clamp. In addition, hLigI interacts with and is inhibited by replication factor C (RFC), the clamp loader complex that loads PCNA onto DNA. Here we show that a mutant version of hLigI, which mimics the hyperphosphorylated M-phase form of hLigI, does not interact with and is not inhibited by RFC, demonstrating that inhibition of ligation is dependent upon the interaction between hLigI and RFC. To examine the biological relevance of hLigI phosphorylation, we isolated derivatives of the hLigI-deficient cell line 46BR.1G1 that stably express mutant versions of hLigI in which four serine residues phosphorylated in vivo were replaced with either alanine or aspartic acid. The cell lines expressing the phosphorylation site mutants of hLigI exhibited a dramatic reduction in proliferation and DNA synthesis and were also hypersensitive to DNA damage. The dominant-negative effects of the hLigI phosphomutants on replication and repair are due to the activation of cellular senescence, presumably because of DNA damage arising from replication abnormalities. Thus, appropriate phosphorylation of hLigI is critical for its participation in DNA replication and repair.
Journal of Biological Chemistry | 2007
Wei Song; David S. Levin; Johnson Varkey; Sean Post; Vladimir P. Bermudez; Jerard Hurwitz; Alan E. Tomkinson
DNA ligase I joins Okazaki fragments during DNA replication and completes certain excision repair pathways. The participation of DNA ligase I in these transactions is directed by physical and functional interactions with proliferating cell nuclear antigen, a DNA sliding clamp, and, replication factor C (RFC), the clamp loader. Here we show that DNA ligase I also interacts with the hRad17 subunit of the hRad17-RFC cell cycle checkpoint clamp loader, and with each of the subunits of its DNA sliding clamp, the heterotrimeric hRad9-hRad1-hHus1 complex. In contrast to the inhibitory effect of RFC, hRad17-RFC stimulates joining by DNA ligase I. Similar results were obtained with the homologous Saccharomyces cerevisiae proteins indicating that the interaction between the replicative DNA ligase and checkpoint clamp is conserved in eukaryotes. Notably, we show that hRad17 preferentially interacts with and specifically stimulates dephosphorylated DNA ligase I. Moreover, there is an increased association between DNA ligase I and hRad17 in S phase following DNA damage and replication blockage that occurs concomitantly with DNA damage-induced dephosphorylation of chromatin-associated DNA ligase I. Thus, our results suggest that the in vivo interaction between DNA ligase I and the checkpoint clamp loader is regulated by post-translational modification of DNA ligase I.
BioEssays | 1997
Alan E. Tomkinson; David S. Levin
Collaboration
Dive into the David S. Levin's collaboration.
University of Texas Health Science Center at San Antonio
View shared research outputsUniversity of Texas Health Science Center at San Antonio
View shared research outputsUniversity of Texas Health Science Center at San Antonio
View shared research outputs