Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David S. Paterson is active.

Publication


Featured researches published by David S. Paterson.


JAMA | 2010

Brainstem serotonergic deficiency in sudden infant death syndrome.

Jhodie R. Duncan; David S. Paterson; Jill M. Hoffman; David J. Mokler; Natalia S. Borenstein; Richard A. Belliveau; Henry F. Krous; Elisabeth A. Haas; Christina Stanley; Eugene E. Nattie; Felicia L. Trachtenberg; Hannah C. Kinney

CONTEXT Sudden infant death syndrome (SIDS) is postulated to result from abnormalities in brainstem control of autonomic function and breathing during a critical developmental period. Abnormalities of serotonin (5-hydroxytryptamine [5-HT]) receptor binding in regions of the medulla oblongata involved in this control have been reported in infants dying from SIDS. OBJECTIVE To test the hypothesis that 5-HT receptor abnormalities in infants dying from SIDS are associated with decreased tissue levels of 5-HT, its key biosynthetic enzyme (tryptophan hydroxylase [TPH2]), or both. DESIGN, SETTING, AND PARTICIPANTS Autopsy study conducted to analyze levels of 5-HT and its metabolite, 5-hydroxyindoleacetic acid (5-HIAA); levels of TPH2; and 5-HT(1A) receptor binding. The data set was accrued between 2004 and 2008 and consisted of 41 infants dying from SIDS (cases), 7 infants with acute death from known causes (controls), and 5 hospitalized infants with chronic hypoxia-ischemia. MAIN OUTCOME MEASURES Serotonin and metabolite tissue levels in the raphé obscurus and paragigantocellularis lateralis (PGCL); TPH2 levels in the raphé obscurus; and 5-HT(1A) binding density in 5 medullary nuclei that contain 5-HT neurons and 5 medullary nuclei that receive 5-HT projections. RESULTS Serotonin levels were 26% lower in SIDS cases (n = 35) compared with age-adjusted controls (n = 5) in the raphé obscurus (55.4 [95% confidence interval {CI}, 47.2-63.6] vs 75.5 [95% CI, 54.2-96.8] pmol/mg protein, P = .05) and the PGCL (31.4 [95% CI, 23.7-39.0] vs 40.0 [95% CI, 20.1-60.0] pmol/mg protein, P = .04). There was no evidence of excessive 5-HT degradation assessed by 5-HIAA levels, 5-HIAA:5-HT ratio, or both. In the raphé obscurus, TPH2 levels were 22% lower in the SIDS cases (n = 34) compared with controls (n = 5) (151.2% of standard [95% CI, 137.5%-165.0%] vs 193.9% [95% CI, 158.6%-229.2%], P = .03). 5-HT(1A) receptor binding was 29% to 55% lower in 3 medullary nuclei that receive 5-HT projections. In 4 nuclei, 3 of which contain 5-HT neurons, there was a decrease with age in 5-HT(1A) receptor binding in the SIDS cases but no change in the controls (age x diagnosis interaction). The profile of 5-HT and TPH2 abnormalities differed significantly between the SIDS and hospitalized groups (5-HT in the raphé obscurus: 55.4 [95% CI, 47.2-63.6] vs 85.6 [95% CI, 61.8-109.4] pmol/mg protein, P = .02; 5-HT in the PGCL: 31.4 [95% CI, 23.7-39.0] vs 71.1 [95% CI, 49.0-93.2] pmol/mg protein, P = .002; TPH2 in the raphé obscurus: 151.2% [95% CI, 137.5%-165.0%] vs 102.6% [95% CI, 58.7%-146.4%], P = .04). CONCLUSION Compared with controls, SIDS was associated with lower 5-HT and TPH2 levels, consistent with a disorder of medullary 5-HT deficiency.


Autonomic Neuroscience: Basic and Clinical | 2006

Serotonergic and glutamatergic neurons at the ventral medullary surface of the human infant: Observations relevant to central chemosensitivity in early human life.

David S. Paterson; Eric G. Thompson; Hannah C. Kinney

Central chemoreception is the mechanism by which the brain detects the level of carbon dioxide (CO(2)) in the arterial blood and alters breathing accordingly in order to maintain it within physiological levels. The ventral surface of the medulla oblongata (VMS) of animals has long been recognized as a site of chemosensitivity, culminating in the recent identification of chemosensitive serotonergic (5-HT) and glutamatergic (Glut) neurons in this region. In this study, we analyzed the distribution of 5-HT and Glut neurons and their receptors in the arcuate nucleus (Arc) at the VMS of the human infant, using single-and double-label immunohistochemistry with specific antibodies. We also examined the expression of astrocytes, as experimental evidence suggests that astrocytes mediate, at least in part, central chemosensitivity via 5-HT and/or Glut receptors. We identified a small number of 5-HT neurons (approximately 5% of Arc neurons), distributed over the entire extent of the VMS, a large number of Glut neurons (approximately 95% of Arc neurons) that localized almost exclusively to the medial Arc, and a large number of astrocytes distributed across the entire extent of the VMS. The Arc also contained 5-HT(1A), kainate (GluR5), and 5-HT(2A) receptors, which localized predominantly to 5-HT neurons, glutamate neurons and astrocytes, respectively. Astrocytes also expressed the vesicular glutamate transporter 2 and low levels of 5-HT(1A) and kainate (GluR5) receptors, indicating that astrocytes may store and release glutamate, possibly in response to stimulation by 5-HT and/or Glut. These observations suggest that important functional interactions exist between 5-HT, glutamate, and astrocytes in the Arc. They also support the idea that the Arc is homologous to chemosensitive zones at the VMS in experimental animals. These data are important towards delineating the role of the human Arc in modulation of homeostasis, and its dysfunction in brainstem-associated pathologies such as the sudden infant death syndrome.


Respiratory Physiology & Neurobiology | 2009

Medullary serotonin defects and respiratory dysfunction in sudden infant death syndrome

David S. Paterson; Gérard Hilaire; Debra E. Weese-Mayer

Sudden infant death syndrome (SIDS) is defined as the sudden and unexpected death of an infant less than 12 months of age that occurs during sleep and remains unexplained after a complete autopsy, death scene investigation, and review of the clinical history. It is the leading cause of postneonatal mortality in the developed world. The cause of SIDS is unknown, but is postulated to involve impairment of brainstem-mediated homeostatic control. Extensive evidence from animal studies indicates that serotonin (5-HT) neurons in the medulla oblongata play a role in the regulation of multiple aspects of respiratory and autonomic function. A subset of SIDS infants have several abnormalities in medullary markers of 5-HT function and genetic polymorphisms impacting the 5-HT system, informing the hypothesis that SIDS results from a defect in 5-HT brainstem-mediated control of respiratory (and autonomic) regulation. Here we review the evidence from postmortem human studies and animal studies to support this hypothesis and discuss how the pathogenesis of SIDS is likely to originate in utero during fetal development.


Journal of Neuropathology and Experimental Neurology | 2005

Serotonin Transporter Abnormality in the Dorsal Motor Nucleus of the Vagus in Rett Syndrome: Potential Implications for Clinical Autonomic Dysfunction

David S. Paterson; Eric G. Thompson; Richard A. Belliveau; Bobbie A. Antalffy; Felicia L. Trachtenberg; Dawna D. Armstrong; Hannah C. Kinney

Autonomic dysfunction is prevalent in girls with Rett syndrome, an X-chromosome-linked disorder of mental retardation resulting from mutations in the gene encoding methyl-CpG-binding protein 2 (MeCP2). This gene plays a role in regulating neuronal activity-dependent gene expression, including brain-derived neurotrophic factor (BDNF), which is a potent serotonergic (5-HT) neuronal growth factor. We analyzed selected parameters of the 5-HT system of the medulla in autopsied patients with Rett syndrome because of the role of BDNF in 5-HT cell development and because 5-HT plays a key role in modulating autonomic control. 5-HT neurons were identified by immunostaining for tryptophan hydroxylase, the biosynthetic enzyme for 5-HT. We quantitated the number of 5-HT cells in the medulla at 2 standardized levels in 11 Rett and 7 control cases. There was no significant difference in 5-HT cell number between the groups. We analyzed binding to the serotonin transporter (SERT) using the radioligand [125I]-RTI-55 with tissue autoradiography in 7 Rett and 5 controls in 9 cardiorespiratory-related nuclei. In the dorsal motor nucleus of the vagus (DMX) (preganglionic parasympathetic outflow), SERT binding for the control cases decreased significantly over time (p = 0.049) but did not change in the Rett cases (p = 0.513). Adjusting for age, binding between the Rett and control cases differed significantly in this nucleus (p = 0.022). There was a marginally significant age versus diagnosis interaction (p = 0.06). Thus, altered 5-HT innervation and/or uptake in the DMX may contribute to abnormal 5-HT modulation of this major autonomic nucleus in patients with Rett syndrome. These data suggest hypotheses concerning 5-HT modulation of vagal function for testing in MeCP2 knockout mice to understand mechanisms underlying autonomic dysfunction in patients with Rett syndrome.


Molecular & Cellular Proteomics | 2012

Brainstem Deficiency of the 14-3-3 Regulator of Serotonin Synthesis: A Proteomics Analysis in the Sudden Infant Death Syndrome

Kevin G. Broadbelt; Keith D. Rivera; David S. Paterson; Jhodie R. Duncan; Felicia L. Trachtenberg; Joao A. Paulo; Martha Stapels; Natalia S. Borenstein; Richard A. Belliveau; Elisabeth A. Haas; Christina Stanley; Henry F. Krous; Hanno Steen; Hannah C. Kinney

Impaired brainstem responses to homeostatic challenges during sleep may result in the sudden infant death syndrome (SIDS). Previously we reported a deficiency of serotonin (5-HT) and its key biosynthetic enzyme, tryptophan hydroxylase (TPH2), in SIDS infants in the medullary 5-HT system that modulates homeostatic responses during sleep. Yet, the underlying basis of the TPH2 and 5-HT deficiency is unknown. In this study, we tested the hypothesis that proteomics would uncover previously unrecognized abnormal levels of proteins related to TPH2 and 5-HT regulation in SIDS cases compared with controls, which could provide novel insight into the basis of their deficiency. We first performed a discovery proteomic analysis of the gigantocellularis of the medullary 5-HT system in the same data set with deficiencies of TPH2 and 5-HT levels. Analysis in 6 SIDS cases and 4 controls revealed a 42–75% reduction in abundance in 5 of the 6 isoforms identified of the 14-3-3 signal transduction family, which is known to influence TPH2 activity (p < 0.07). These findings were corroborated in an additional SIDS and control sample using an orthogonal MSE-based quantitative proteomic strategy. To confirm these proteomics results in a larger data set (38 SIDS, 11 controls), we applied Western blot analysis in the gigantocellularis and found that 4/7 14-3-3 isoforms identified were significantly reduced in SIDS cases (p ≤ 0.02), with a 43% reduction in all 14-3-3 isoforms combined (p < 0.001). Abnormalities in 5-HT and TPH2 levels and 5-HT1A receptor binding were associated with the 14-3-3 deficits in the same SIDS cases. These data suggest a potential molecular defect in SIDS related to TPH2 regulation, as 14-3-3 is critical in this process.


Journal of Neuropathology and Experimental Neurology | 2011

Decreased GABAA Receptor Binding in the Medullary Serotonergic System In the Sudden Infant Death Syndrome

Kevin G. Broadbelt; David S. Paterson; Richard A. Belliveau; Felicia L. Trachtenberg; Elisabeth A. Haas; Christina Stanley; Henry F. Krous; Hannah C. Kinney

&ggr;-Aminobutyric acid (GABA) neurons in the medulla oblongata help regulate homeostasis, in part through interactions with the medullary serotonergic (5-HT) system. Previously, we reported abnormalities in multiple 5-HT markers in the medullary 5-HT system of infants dying from sudden infant death syndrome (SIDS), suggesting that 5-HT dysfunction is involved in its pathogenesis. Here, we tested the hypothesis that markers of GABAA receptors are decreased in the medullary 5-HT system in SIDS cases compared with controls. Using tissue receptor autoradiography with the radioligand 3H-GABA, we found 25% to 52% reductions in GABAA receptor binding density in 7 of 10 key nuclei sampled of the medullary 5-HT system in the SIDS cases (postconceptional age [PCA] = 51.7 ± 8.3, n = 28) versus age-adjusted controls (PCA = 55.3 ± 13.5, n = 8) (p ≤ 0.04). By Western blotting, there was 46.2% reduction in GABAA&agr;3 subunit levels in the gigantocellularis (component of the medullary 5-HT system) of SIDS cases (PCA = 53.9 ± 8.4, n = 24) versus controls (PCA = 55.3 ± 8.3, n = 8) (56.8% standard in SIDS cases vs 99.35% in controls; p = 0.026). These data suggest that medullary GABAA receptors are abnormal in SIDS infants and that SIDS is a complex disorder of a homeostatic network in the medulla that involves deficits of the GABAergic and 5-HT systems.


Autonomic Neuroscience: Basic and Clinical | 2008

The development of nicotinic receptors in the human medulla oblongata: Inter-relationship with the serotonergic system☆

Jhodie R. Duncan; David S. Paterson; Hannah C. Kinney

Maternal cigarette smoking during pregnancy adversely affects fetal development and increases the risk for the sudden infant death syndrome (SIDS). In SIDS we have reported abnormalities in the medullary serotonergic (5-HT) system, which is vital for homeostatic control. In this study we analyzed the inter-relationship between nicotinic receptors (nAChRs), to which nicotine in cigarette smoke bind, and the medullary 5-HT system in the human fetus and infant as a step towards determining the mechanisms whereby smoking increases SIDS risk in infants with 5-HT defects. Immunohistochemistry for the alpha4 nAChR subunit and 5-HT neurons was applied in fetal and infant medullae (15-92 postconceptional weeks, n=9). The distribution of different nAChRs was determined from 39-82 postconceptional weeks (n=5) using tissue autoradiography for 3H-nicotine, 3H-epibatidine, 3H-cytisine, and 125I-bungarotoxin; the findings were compared to laboratory 5-HT1A and 5-HT transporter binding data, and 5-HT neuronal density. Alpha4 immunoreactivity was ubiquitously expressed in medullary nuclei related to homeostatic functions from 15 weeks on, including rhombic lip germinal cells. At all ages, alpha4 co-localized with 5-HT neurons, indicating a potential site of interaction whereby exogenous nicotine may adversely affect 5-HT neuronal development and function. Binding for heteromeric nAChRs was highest in the inferior olive, and for homomeric nAChRs, in the vagal complex. In the paragigantocellularis lateralis, 5-HT1A receptor binding simultaneously increased as alpha7 binding decreased across infancy. This study indicates parallel dynamic and complex changes in the medullary nicotinic and 5-HT systems throughout early life, i.e., the period of risk for SIDS.


Pediatric Research | 2010

Lack of Association of the Serotonin Transporter Polymorphism With the Sudden Infant Death Syndrome in the San Diego Dataset

David S. Paterson; Keith D. Rivera; Kevin G. Broadbelt; Felicia L. Trachtenberg; Richard A. Belliveau; Ingrid A. Holm; Elisabeth A. Haas; Christina Stanley; Henry F. Krous; Hannah C. Kinney; Kyriacos Markianos

Dysfunction of medullary serotonin (5-HT)-mediated respiratory and autonomic function is postulated to underlie the pathogenesis of the majority of sudden infant death syndrome (SIDS) cases. Several studies have reported an increased frequency of the LL genotype and L allele of the 5-HT transporter (5-HTT) gene promoter polymorphism (5-HTTLPR), which is associated with increased transcriptional activity and 5-HT transport in vitro, in SIDS cases compared with controls. These findings raise the possibility that this polymorphism contributes to or exacerbates existing medullary 5-HT dysfunction in SIDS. In this study, we tested the hypothesis that the frequency of LL genotype and L allele are higher in 179 SIDS cases compared with 139 controls of multiple ethnicities in the San Diego SIDS Dataset. We observed no significant association of genotype or allele with SIDS cases either in the total cohort or on stratification for ethnicity. These observations do not support previous findings that the L allele and/or LL genotype of the 5-HTTLPR are associated with SIDS.


Autonomic Neuroscience: Basic and Clinical | 2010

Neuroanatomic relationships between the GABAergic and serotonergic systems in the developing human medulla

Kevin G. Broadbelt; David S. Paterson; Keith D. Rivera; Felicia L. Trachtenberg; Hannah C. Kinney

gamma-Amino butyric (GABA) critically influences serotonergic (5-HT) neurons in the raphé and extra-raphé of the medulla oblongata. In this study we hypothesize that there are marked changes in the developmental profile of markers of the human medullary GABAergic system relative to the 5-HT system in early life. We used single- and double-label immunocytochemistry and tissue receptor autoradiography in 15 human medullae from fetal and infant cases ranging from 15 gestational weeks to 10 postnatal months, and compared our findings with an extensive 5-HT-related database in our laboratory. In the raphé obscurus, we identified two subsets of GABAergic neurons using glutamic acid decarboxylase (GAD65/67) immunostaining: one comprised of small, round neurons; the other, medium, spindle-shaped neurons. In three term medullae cases, positive immunofluorescent neurons for both tryptophan hydroxylase and GAD65/67 were counted within the raphé obscurus. This revealed that approximately 6% of the total neurons counted in this nucleus expressed both GAD65/67 and TPOH suggesting co-production of GABA by a subset of 5-HT neurons. The distribution of GABA(A) binding was ubiquitous across medullary nuclei, with highest binding in the raphé obscurus. GABA(A) receptor subtypes alpha1 and alpha3 were expressed by 5-HT neurons, indicating the site of interaction of GABA with 5-HT neurons. These receptor subtypes and KCC2, a major chloride transporter, were differentially expressed across early development, from midgestation (20 weeks) and thereafter. The developmental profile of GABAergic markers changed dramatically relative to the 5-HT markers. These data provide baseline information for medullary studies of human pediatric disorders, such as sudden infant death syndrome.


Pediatric Research | 2009

Serotonin-Related FEV Gene Variant in the Sudden Infant Death Syndrome Is a Common Polymorphism in the African-American Population

Kevin G. Broadbelt; Melissa A. Barger; David S. Paterson; Ingrid A. Holm; Elisabeth A. Haas; Henry F. Krous; Hannah C. Kinney; Kyriacos Markianos; Alan H. Beggs

An important subset of the sudden infant death syndrome (SIDS) is associated with multiple serotonergic (5-HT) abnormalities in regions of the medulla oblongata. The mouse ortholog of the fifth Ewing variant gene (FEV) is critical for 5-HT neuronal development. A putatively rare intronic variant [IVS2-191_190insA, here referred to as c.128-(191_192)dupA] has been reported as a SIDS-associated mutation in an African-American population. We tested this association in an independent dataset: 137 autopsied cases (78 SIDS, 59 controls) and an additional 296 control DNA samples from Coriell Cell Repositories. In addition to the c.128-(191_192)dupA variant, we observed an associated single-base deletion [c.128-(301-306)delG] in a subset of the samples. Neither of the two FEV variants showed significant association with SIDS in either the African-American subgroup or the overall cohort. Although we found a significant association of c.128-(191_192)dupA with SIDS when San Diego Hispanic SIDS cases were compared with San Diego Hispanic controls plus Mexican controls (p = 0.04), this became nonsignificant after multiple testing correction. Among Coriell controls, 33 of 99 (33%) African-American and 0 of 197 (0%) of the remaining controls carry the polymorphism (c.128-(191_192)dupA). The polymorphism seems to be a common, likely nonpathogenic, variant in the African-American population.

Collaboration


Dive into the David S. Paterson's collaboration.

Top Co-Authors

Avatar

Hannah C. Kinney

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Henry F. Krous

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elisabeth A. Haas

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Robin L. Haynes

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jhodie R. Duncan

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Ryan Darnall

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Bradley Randall

University of South Dakota

View shared research outputs
Researchain Logo
Decentralizing Knowledge