Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David S. Wishart is active.

Publication


Featured researches published by David S. Wishart.


Journal of Biomolecular NMR | 1994

The 13C Chemical-Shift Index: A simple method for the identification of protein secondary structure using 13C chemical-shift data

David S. Wishart; Brian D. Sykes

SummaryA simple technique for identifying protein secondary structures through the analysis of backbone 13C chemical shifts is described. It is based on the Chemical-Shift Index [Wishart et al. (1992) Biochemistry, 31, 1647–1651] which was originally developed for the analysis of 1Hα chemical shifts. By extending the Chemical-Shift Index to include 13Cα, 13Cβ and carbonyl 13C chemical shifts, it is now possible to use four independent chemical-shift measurements to identify and locate protein secondary structures. It is shown that by combining both 1H and 13C chemical-shift indices to produce a ‘consensus’ estimate of secondary structure, it is possible to achieve a predictive accuracy in excess of 92%. This suggests that the secondary structure of peptides and proteins can be accurately obtained from 1H and 13C chemical shifts, without recourse to NOE measurements.


Journal of Biomolecular NMR | 1995

1H, 13C and 15N chemical shift referencing in biomolecular NMR.

David S. Wishart; Colin G. Bigam; Jian Yao; Frits Abildgaard; H. Jane Dyson; Eric Oldfield; John L. Markley; Brian D. Sykes

SummaryA considerable degree of variability exists in the way that 1H, 13C and 15N chemical shifts are reported and referenced for biomolecules. In this article we explore some of the reasons for this situation and propose guidelines for future chemical shift referencing and for conversion from many common 1H, 13C and 15N chemical shift standards, now used in biomolecular NMR, to those proposed here.


Nucleic Acids Research | 2006

DrugBank: a comprehensive resource for in silico drug discovery and exploration

David S. Wishart; Craig Knox; An Chi Guo; Savita Shrivastava; Murtaza Hassanali; Paul Stothard; Zhan Chang; Jennifer Woolsey

DrugBank is a unique bioinformatics/cheminformatics resource that combines detailed drug (i.e. chemical) data with comprehensive drug target (i.e. protein) information. The database contains >4100 drug entries including >800 FDA approved small molecule and biotech drugs as well as >3200 experimental drugs. Additionally, >14,000 protein or drug target sequences are linked to these drug entries. Each DrugCard entry contains >80 data fields with half of the information being devoted to drug/chemical data and the other half devoted to drug target or protein data. Many data fields are hyperlinked to other databases (KEGG, PubChem, ChEBI, PDB, Swiss-Prot and GenBank) and a variety of structure viewing applets. The database is fully searchable supporting extensive text, sequence, chemical structure and relational query searches. Potential applications of DrugBank include in silico drug target discovery, drug design, drug docking or screening, drug metabolism prediction, drug interaction prediction and general pharmaceutical education. DrugBank is available at http://redpoll.pharmacy.ualberta.ca/drugbank/.


Nucleic Acids Research | 2007

HMDB: the Human Metabolome Database

David S. Wishart; Dan Tzur; Craig Knox; Roman Eisner; An Chi Guo; Nelson Young; Dean Cheng; Kevin Jewell; David Arndt; Summit Sawhney; Chris Fung; Lisa Nikolai; Michael J. Lewis; Marie-Aude Coutouly; Ian D. Forsythe; Peter Tang; Savita Shrivastava; Kevin Jeroncic; Paul Stothard; Godwin Amegbey; David Block; David Hau; James Wagner; Jessica Miniaci; Melisa Clements; Mulu Gebremedhin; Natalie Guo; Ying Wen Zhang; Gavin E. Duggan; Glen D. MacInnis

The Human Metabolome Database (HMDB) is currently the most complete and comprehensive curated collection of human metabolite and human metabolism data in the world. It contains records for more than 2180 endogenous metabolites with information gathered from thousands of books, journal articles and electronic databases. In addition to its comprehensive literature-derived data, the HMDB also contains an extensive collection of experimental metabolite concentration data compiled from hundreds of mass spectra (MS) and Nuclear Magnetic resonance (NMR) metabolomic analyses performed on urine, blood and cerebrospinal fluid samples. This is further supplemented with thousands of NMR and MS spectra collected on purified, reference metabolites. Each metabolite entry in the HMDB contains an average of 90 separate data fields including a comprehensive compound description, names and synonyms, structural information, physico-chemical data, reference NMR and MS spectra, biofluid concentrations, disease associations, pathway information, enzyme data, gene sequence data, SNP and mutation data as well as extensive links to images, references and other public databases. Extensive searching, relational querying and data browsing tools are also provided. The HMDB is designed to address the broad needs of biochemists, clinical chemists, physicians, medical geneticists, nutritionists and members of the metabolomics community. The HMDB is available at:


Nucleic Acids Research | 2008

DrugBank: a knowledgebase for drugs, drug actions and drug targets

David S. Wishart; Craig Knox; An Chi Guo; Dean Cheng; Savita Shrivastava; Dan Tzur; Bijaya Gautam; Murtaza Hassanali

DrugBank is a richly annotated resource that combines detailed drug data with comprehensive drug target and drug action information. Since its first release in 2006, DrugBank has been widely used to facilitate in silico drug target discovery, drug design, drug docking or screening, drug metabolism prediction, drug interaction prediction and general pharmaceutical education. The latest version of DrugBank (release 2.0) has been expanded significantly over the previous release. With ∼4900 drug entries, it now contains 60% more FDA-approved small molecule and biotech drugs including 10% more ‘experimental’ drugs. Significantly, more protein target data has also been added to the database, with the latest version of DrugBank containing three times as many non-redundant protein or drug target sequences as before (1565 versus 524). Each DrugCard entry now contains more than 100 data fields with half of the information being devoted to drug/chemical data and the other half devoted to pharmacological, pharmacogenomic and molecular biological data. A number of new data fields, including food–drug interactions, drug–drug interactions and experimental ADME data have been added in response to numerous user requests. DrugBank has also significantly improved the power and simplicity of its structure query and text query searches. DrugBank is available at http://www.drugbank.ca


Nucleic Acids Research | 2011

DrugBank 3.0: a comprehensive resource for ‘Omics’ research on drugs

Craig Knox; Vivian Law; Timothy Jewison; Philip Liu; Son Ly; Alex Frolkis; Allison Pon; Kelly Banco; Christine Mak; Vanessa Neveu; Yannick Djoumbou; Roman Eisner; An Chi Guo; David S. Wishart

DrugBank (http://www.drugbank.ca) is a richly annotated database of drug and drug target information. It contains extensive data on the nomenclature, ontology, chemistry, structure, function, action, pharmacology, pharmacokinetics, metabolism and pharmaceutical properties of both small molecule and large molecule (biotech) drugs. It also contains comprehensive information on the target diseases, proteins, genes and organisms on which these drugs act. First released in 2006, DrugBank has become widely used by pharmacists, medicinal chemists, pharmaceutical researchers, clinicians, educators and the general public. Since its last update in 2008, DrugBank has been greatly expanded through the addition of new drugs, new targets and the inclusion of more than 40 new data fields per drug entry (a 40% increase in data ‘depth’). These data field additions include illustrated drug-action pathways, drug transporter data, drug metabolite data, pharmacogenomic data, adverse drug response data, ADMET data, pharmacokinetic data, computed property data and chemical classification data. DrugBank 3.0 also offers expanded database links, improved search tools for drug–drug and food–drug interaction, new resources for querying and viewing drug pathways and hundreds of new drug entries with detailed patent, pricing and manufacturer data. These additions have been complemented by enhancements to the quality and quantity of existing data, particularly with regard to drug target, drug description and drug action data. DrugBank 3.0 represents the result of 2 years of manual annotation work aimed at making the database much more useful for a wide range of ‘omics’ (i.e. pharmacogenomic, pharmacoproteomic, pharmacometabolomic and even pharmacoeconomic) applications.


Nucleic Acids Research | 2009

HMDB: a knowledgebase for the human metabolome

David S. Wishart; Craig Knox; Anchi Guo; Roman Eisner; Nelson Young; Bijaya Gautam; David Hau; Nick Psychogios; Edison Dong; Souhaila Bouatra; Rupasri Mandal; Igor Sinelnikov; Jianguo Xia; Leslie Jia; Joseph A. Cruz; Emilia Lim; Constance A. Sobsey; Savita Shrivastava; Paul Huang; Philip Liu; Lydia Fang; Jun Peng; Ryan Fradette; Dean Cheng; Dan Tzur; Melisa Clements; Avalyn Lewis; Andrea De Souza; Azaret Zuniga; Margot Dawe

The Human Metabolome Database (HMDB, http://www.hmdb.ca) is a richly annotated resource that is designed to address the broad needs of biochemists, clinical chemists, physicians, medical geneticists, nutritionists and members of the metabolomics community. Since its first release in 2007, the HMDB has been used to facilitate the research for nearly 100 published studies in metabolomics, clinical biochemistry and systems biology. The most recent release of HMDB (version 2.0) has been significantly expanded and enhanced over the previous release (version 1.0). In particular, the number of fully annotated metabolite entries has grown from 2180 to more than 6800 (a 300% increase), while the number of metabolites with biofluid or tissue concentration data has grown by a factor of five (from 883 to 4413). Similarly, the number of purified compounds with reference to NMR, LC-MS and GC-MS spectra has more than doubled (from 380 to more than 790 compounds). In addition to this significant expansion in database size, many new database searching tools and new data content has been added or enhanced. These include better algorithms for spectral searching and matching, more powerful chemical substructure searches, faster text searching software, as well as dedicated pathway searching tools and customized, clickable metabolic maps. Changes to the user-interface have also been implemented to accommodate future expansion and to make database navigation much easier. These improvements should make the HMDB much more useful to a much wider community of users.


Nucleic Acids Research | 2015

MetaboAnalyst 3.0—making metabolomics more meaningful

Jianguo Xia; Igor Sinelnikov; Beomsoo Han; David S. Wishart

MetaboAnalyst (www.metaboanalyst.ca) is a web server designed to permit comprehensive metabolomic data analysis, visualization and interpretation. It supports a wide range of complex statistical calculations and high quality graphical rendering functions that require significant computational resources. First introduced in 2009, MetaboAnalyst has experienced more than a 50X growth in user traffic (>50 000 jobs processed each month). In order to keep up with the rapidly increasing computational demands and a growing number of requests to support translational and systems biology applications, we performed a substantial rewrite and major feature upgrade of the server. The result is MetaboAnalyst 3.0. By completely re-implementing the MetaboAnalyst suite using the latest web framework technologies, we have been able substantially improve its performance, capacity and user interactivity. Three new modules have also been added including: (i) a module for biomarker analysis based on the calculation of receiver operating characteristic curves; (ii) a module for sample size estimation and power analysis for improved planning of metabolomics studies and (iii) a module to support integrative pathway analysis for both genes and metabolites. In addition, popular features found in existing modules have been significantly enhanced by upgrading the graphical output, expanding the compound libraries and by adding support for more diverse organisms.


Nucleic Acids Research | 2011

PHAST: A Fast Phage Search Tool

You-Xing Zhou; Yongjie Liang; Karlene H Lynch; Jonathan Dennis; David S. Wishart

PHAge Search Tool (PHAST) is a web server designed to rapidly and accurately identify, annotate and graphically display prophage sequences within bacterial genomes or plasmids. It accepts either raw DNA sequence data or partially annotated GenBank formatted data and rapidly performs a number of database comparisons as well as phage ‘cornerstone’ feature identification steps to locate, annotate and display prophage sequences and prophage features. Relative to other prophage identification tools, PHAST is up to 40 times faster and up to 15% more sensitive. It is also able to process and annotate both raw DNA sequence data and Genbank files, provide richly annotated tables on prophage features and prophage ‘quality’ and distinguish between intact and incomplete prophage. PHAST also generates downloadable, high quality, interactive graphics that display all identified prophage components in both circular and linear genomic views. PHAST is available at (http://phast.wishartlab.com).


Journal of Biomolecular NMR | 1995

1H, 13C and 15N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects

David S. Wishart; Colin G. Bigam; Arne Holm; Robert S. Hodges; Brian D. Sykes

In this study we report on the 1H, 13C and 15N NMR chemical shifts for the random coil state and nearest-neighbor sequence effects measured from the protected linear hexapeptide Gly-Gly-X-Y-Gly-Gly (where X and Y are any of the 20 common amino acids). We present data for a set of 40 peptides (of the possible 400) including Gly-Gly-X-Ala-Gly-Gly and Gly-Gly-X-Pro-Gly-Gly, measured under identical aqueous conditions. Because all spectra were collected under identical experimental conditions, the data from the Gly-Gly-X-Ala-Gly-Gly series provide a complete and internally consistent set of 1H, 13C and 15N random coil chemical shifts for all 20 common amino acids. In addition, studies were also conducted into nearest-neighbor effects on the random coil shift arising from a variety of X and Y positional substitutions. Comparisons between the chemical shift measurements obtained from Gly-Gly-X-Ala-Gly-Gly and Gly-Gly-X-Pro-Gly-Gly reveal significant systematic shift differences arising from the presence of proline in the peptide sequence. Similarly, measurements of the chemical shift changes occurring for both alanine and proline (i.e., the residues in the Y position) are found to depend strougly on the type of amino acid substituted into the X position. These data lend support to the hypothesis that sequence effects play a significant role in determining peptide and protein chemical shifts.

Collaboration


Dive into the David S. Wishart's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge