Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David Samuel Johnson is active.

Publication


Featured researches published by David Samuel Johnson.


Genome Biology | 2008

Model-based analysis of ChIP-Seq (MACS).

Yong Zhang; Tao Liu; Clifford A. Meyer; Jérôme Eeckhoute; David Samuel Johnson; Bradley E. Bernstein; Chad Nusbaum; Richard M. Myers; Myles Brown; Wei Li; X. Shirley Liu

We present Model-based Analysis of ChIP-Seq data, MACS, which analyzes data generated by short read sequencers such as Solexas Genome Analyzer. MACS empirically models the shift size of ChIP-Seq tags, and uses it to improve the spatial resolution of predicted binding sites. MACS also uses a dynamic Poisson distribution to effectively capture local biases in the genome, allowing for more robust predictions. MACS compares favorably to existing ChIP-Seq peak-finding algorithms, and is freely available.


Science | 2007

Genome-wide mapping of in vivo protein-DNA interactions.

David Samuel Johnson; Ali Mortazavi; Richard M. Myers; Barbara J. Wold

In vivo protein-DNA interactions connect each transcription factor with its direct targets to form a gene network scaffold. To map these protein-DNA interactions comprehensively across entire mammalian genomes, we developed a large-scale chromatin immunoprecipitation assay (ChIPSeq) based on direct ultrahigh-throughput DNA sequencing. This sequence census method was then used to map in vivo binding of the neuron-restrictive silencer factor (NRSF; also known as REST, for repressor element–1 silencing transcription factor) to 1946 locations in the human genome. The data display sharp resolution of binding position [±50 base pairs (bp)], which facilitated our finding motifs and allowed us to identify noncanonical NRSF-binding motifs. These ChIPSeq data also have high sensitivity and specificity [ROC (receiver operator characteristic) area ≥ 0.96] and statistical confidence (P <10–4), properties that were important for inferring new candidate interactions. These include key transcription factors in the gene network that regulates pancreatic islet cell development.


Nature | 2012

Coastal eutrophication as a driver of salt marsh loss

Linda A. Deegan; David Samuel Johnson; R. Scott Warren; Bruce J. Peterson; John W. Fleeger; Sergio Fagherazzi; Wilfred M. Wollheim

Salt marshes are highly productive coastal wetlands that provide important ecosystem services such as storm protection for coastal cities, nutrient removal and carbon sequestration. Despite protective measures, however, worldwide losses of these ecosystems have accelerated in recent decades. Here we present data from a nine-year whole-ecosystem nutrient-enrichment experiment. Our study demonstrates that nutrient enrichment, a global problem for coastal ecosystems, can be a driver of salt marsh loss. We show that nutrient levels commonly associated with coastal eutrophication increased above-ground leaf biomass, decreased the dense, below-ground biomass of bank-stabilizing roots, and increased microbial decomposition of organic matter. Alterations in these key ecosystem properties reduced geomorphic stability, resulting in creek-bank collapse with significant areas of creek-bank marsh converted to unvegetated mud. This pattern of marsh loss parallels observations for anthropogenically nutrient-enriched marshes worldwide, with creek-edge and bay-edge marsh evolving into mudflats and wider creeks. Our work suggests that current nutrient loading rates to many coastal ecosystems have overwhelmed the capacity of marshes to remove nitrogen without deleterious effects. Projected increases in nitrogen flux to the coast, related to increased fertilizer use required to feed an expanding human population, may rapidly result in a coastal landscape with less marsh, which would reduce the capacity of coastal regions to provide important ecological and economic services.


Genome Research | 2009

Distinct DNA methylation patterns characterize differentiated human embryonic stem cells and developing human fetal liver

Alayne L Brunner; David Samuel Johnson; Si Wan Kim; Anton Valouev; Timothy E. Reddy; Norma F. Neff; Elizabeth Anton; Catherine Medina; Loan Nguyen; Eric Chiao; Chuba Oyolu; Gary P. Schroth; Devin Absher; Julie C. Baker; Richard M. Myers

To investigate the role of DNA methylation during human development, we developed Methyl-seq, a method that assays DNA methylation at more than 90,000 regions throughout the genome. Performing Methyl-seq on human embryonic stem cells (hESCs), their derivatives, and human tissues allowed us to identify several trends during hESC and in vivo liver differentiation. First, differentiation results in DNA methylation changes at a minimal number of assayed regions, both in vitro and in vivo (2%-11%). Second, in vitro hESC differentiation is characterized by both de novo methylation and demethylation, whereas in vivo fetal liver development is characterized predominantly by demethylation. Third, hESC differentiation is uniquely characterized by methylation changes specifically at H3K27me3-occupied regions, bivalent domains, and low density CpG promoters (LCPs), suggesting that these regions are more likely to be involved in transcriptional regulation during hESC differentiation. Although both H3K27me3-occupied domains and LCPs are also regions of high variability in DNA methylation state during human liver development, these regions become highly unmethylated, which is a distinct trend from that observed in hESCs. Taken together, our results indicate that hESC differentiation has a unique DNA methylation signature that may not be indicative of in vivo differentiation.


Genome Research | 2010

Sequence features that drive human promoter function and tissue specificity

Jane M. Landolin; David Samuel Johnson; Nathan D. Trinklein; Shelley Force Aldred; Catherine Medina; Hennady P. Shulha; Zhiping Weng; Richard M. Myers

Promoters are important regulatory elements that contain the necessary sequence features for cells to initiate transcription. To functionally characterize a large set of human promoters, we measured the transcriptional activities of 4575 putative promoters across eight cell lines using transient transfection reporter assays. In parallel, we measured gene expression in the same cell lines and observed a significant correlation between promoter activity and endogenous gene expression (r = 0.43). As transient transfection assays directly measure the promoting effect of a defined fragment of DNA sequence, decoupled from epigenetic, chromatin, or long-range regulatory effects, we sought to predict whether a promoter was active using sequence features alone. CG dinucleotide content was highly predictive of ubiquitous promoter activity, necessitating the separation of promoters into two groups: high CG promoters, mostly ubiquitously active, and low CG promoters, mostly cell line-specific. Computational models trained on the binding potential of transcriptional factor (TF) binding motifs could predict promoter activities in both high and low CG groups: average area under the receiver operating characteristic curve (AUC) of the models was 91% and exceeded the AUC of CG content by an average of 23%. Known relationships, for example, between HNF4A and hepatocytes, were recapitulated in the corresponding cell lines, in this case the liver-derived cell line HepG2. Half of the associations between tissue-specific TFs and cell line-specific promoters were new. Our study underscores the importance of collecting functional information from complementary assays and conditions to understand biology in a systematic framework.


Estuaries and Coasts | 2007

Worm holes and their space-time continuum: Spatial and temporal variability of macroinfaunal annelids in a Northern New England salt marsh

David Samuel Johnson; John W. Fleeger; Kari Galván; E. Barry Moser

Coastal systems serve many human uses and as a result are susceptible to anthropogenic activities such as nutrient loading and overfishing. In soft sediments, infauna frequently serve as key indicators of such activities. To use infauna effectively as bioindicators, it is important to understand how infaunal abundances and community patterns vary naturally within ecosystems. We examined the spatial and temporal dynamics of infaunal annelids in four tidal creeks of the Plum Island Estuary, Massachusetts, USA, from June to October 2003, sampling along a tidal inundation gradient that crossed five distinct habitats from creek bottoms to the vegetated high marsh platform. Annelids comprised 97% of the total number of macroinfauna. Highest densities were found in creek wall habitats (33,418–65,535 individuals m−2), and lowest densities (2,421–10,668 individuals m−2) were found inSpartina patens habitats. Five numerically abundant species comprised 87% of the annelid assemblage and three species,Manayunkia aestuarina (Polychaeta),Paranais litoralis (Oligochaeta), andCernosvitoviella immota (Oligochaeta), were broadly distributed across the marsh landscape.Streblospio benedicti (Polychaeta) andFabricia sabella (Polychaeta) were abundant only in mudflat and creek wall habitats, respectively.P. litoralis experienced a summer decline in all habitats, whereasM. aestuarina abundance increased 4–5 fold, in October relative to June in creek wall and tall-formSpartina alterniflora habitats. Hierarchical spatial, analysis revealed that >90% of the variability in annelid abundances was found at the mesospatial scale (<50 m). Variation among the four creeks, (>1 km) was relatively small.


Ecosphere | 2015

A framework for quantifying the magnitude and variability of community responses to global change drivers

Meghan L. Avolio; Kimberly J. La Pierre; Gregory R. Houseman; Sally E. Koerner; Emily Grman; Forest Isbell; David Samuel Johnson; Kevin R. Wilcox

A major challenge in global change ecology is to predict the trajectory and magnitude of community change in response to global change drivers (GCDs). Here, we present a new framework that not only increases the predictive power of individual studies, but also allows for synthesis across GCD studies and ecosystems. First, we suggest that by quantifying community dissimilarity of replicates both among and within treatments, we can infer both the magnitude and predictability of community change, respectively. Second, we demonstrate the utility of integrating rank abundance curves with measures of community dissimilarity to understand the species-level dynamics driving community changes and propose a series of testable hypotheses linking changes in rank abundance curves with shifts in community dissimilarity. Finally, we review six case studies that demonstrate how our new conceptual framework can be applied. Overall, we present a new framework for holistically predicting community responses to GCDs that has broad applicability in this era of unprecedented global change and novel environmental conditions.


Journal of Crustacean Biology | 2015

The savory swimmer swims north : a northern range extension of the blue crab Callinectes sapidus?

David Samuel Johnson

Worldwide, climate-change is shifting species distributions poleward. Here I present recent (2012-2014) observations of the blue crab, Callinectes sapidus Rathbun, 1896, in the Gulf of Maine (GoM), north of its historical range of Cape Cod, Massachusetts. To test the hypothesis of a climate-driven range expansion, I examined near-surface ocean temperatures. On average, ocean temperatures in the GoM in summer 2012 and 2013 were up to 1.3°C higher than the average of the previous decade, suggesting that warmer waters may have promoted the recruitment of C. sapidus to the GoM. Previous ephemeral populations of C. sapidus in the Gulf of Maine have been reported since the 1860s. Recent observations and continued warming in the northwest Atlantic may signal a permanent poleward expansion of C. sapidus into the GoM. If so, then a key goal for ecologists and managers will be to understand the effect of C. sapidus on GoM food-webs and fisheries.


Ecology and Evolution | 2017

Sea Level Rise may Increase Extinction Risk of a Saltmarsh Ontogenetic Habitat Specialist

David Samuel Johnson; Bethany L. Williams

Abstract Specialist species are more vulnerable to environmental change than generalist species. For species with ontogenetic niche shifts, specialization may occur at a particular life stage making those stages more susceptible to environmental change. In the salt marshes in the northeast U.S., accelerated sea level rise is shifting vegetation patterns from flood‐intolerant species such as Spartina patens to the flood‐tolerant Spartina alterniflora. We tested the potential impact of this change on the coffee bean snail, Melampus bidentatus, a numerically dominant benthic invertebrate with an ontogenetic niche shift. From a survey of eight marshes throughout the northeast U.S., small snails were found primarily in S. patens habitats, and large snails were found primarily in stunted S. alterniflora habitats. When transplanted into stunted S. alterniflora, small snails suffered significantly higher mortality relative to those in S. patens habitats; adult snail survivorship was similar between habitats. Because other habitats were not interchangeable with S. patens for young snails, these results suggest that Melampus is an ontogenetic specialist where young snails are habitat specialists and adult snails are habitat generalists. Temperature was significantly higher and relative humidity significantly lower in stunted S. alterniflora than in S. patens. These data suggest that thermal and desiccation stress restricted young snails to S. patens habitat, which has high stem density and a layer of thatch that protects snails from environmental stress. Other authors predict that if salt marshes in the northeast U.S. are unable to migrate landward, sea level rise will eliminate S. patens habitats. We suggest that if a salt marsh loses its S. patens habitats, it will also lose its coffee bean snails. Our results demonstrate the need to consider individual life stages when determining a species’ vulnerability to global change.


Science | 2014

Making waves about spreading weeds--response.

David Samuel Johnson

Comment on “Specific and nonhepatotoxic degradation of nuclear hepatitis B virus cccDNA” Francis V. Chisari, William S. Mason,

Collaboration


Dive into the David Samuel Johnson's collaboration.

Top Co-Authors

Avatar

John W. Fleeger

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar

Linda A. Deegan

Marine Biological Laboratory

View shared research outputs
Top Co-Authors

Avatar

Kari Galván

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aixin Hou

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar

Bruce J. Peterson

Marine Biological Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge