Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David Schaer is active.

Publication


Featured researches published by David Schaer.


Journal for ImmunoTherapy of Cancer | 2014

Targeting tumor-necrosis factor receptor pathways for tumor immunotherapy

David Schaer; Daniel Hirschhorn-Cymerman; Jedd D. Wolchok

With the success of ipilimumab and promise of programmed death-1 pathway-targeted agents, the field of tumor immunotherapy is expanding rapidly. Newer targets for clinical development include select members of the tumor necrosis factor receptor (TNFR) family. Agonist antibodies to these co-stimulatory molecules target both T and B cells, modulating T-cell activation and enhancing immune responses. In vitro and in vivo preclinical data have provided the basis for continued development of 4-1BB, OX40, glucocorticoid-induced TNFR-related gene, herpes virus entry mediator, and CD27 as potential therapies for patients with cancer. In this review, we summarize the immune response to tumors, consider preclinical and early clinical data on select TNFR family members, discuss potential translational challenges and suggest possible combination therapies with the aim of inducing durable antitumor responses.


OncoImmunology | 2016

Timing of CSF-1/CSF-1R signaling blockade is critical to improving responses to CTLA-4 based immunotherapy

Rikke B. Holmgaard; Alexandra Brachfeld; Billel Gasmi; David R. Jones; Marissa Mattar; Thompson N. Doman; Mary Murphy; David Schaer; Jedd D. Wolchok; Taha Merghoub

ABSTRACT Colony stimulating factor-1 (CSF-1) is produced by a variety of cancers and recruits myeloid cells that suppress antitumor immunity, including myeloid-derived suppressor cells (MDSCs.) Here, we show that both CSF-1 and its receptor (CSF-1R) are frequently expressed in tumors from cancer patients, and that this expression correlates with tumor-infiltration of MDSCs. Furthermore, we demonstrate that these tumor-infiltrating MDSCs are highly immunosuppressive but can be reprogrammed toward an antitumor phenotype in vitro upon CSF-1/CSF-1R signaling blockade. Supporting these findings, we show that inhibition of CSF-1/CSF-1R signaling using an anti-CSF-1R antibody can regulate both the number and the function of MDSCs in murine tumors in vivo. We further find that treatment with anti-CSF-1R antibody induces antitumor T-cell responses and tumor regression in multiple tumor models when combined with CTLA-4 blockade therapy. However, this occurs only when administered after or concurrent with CTLA-4 blockade, indicating that timing of each therapeutic intervention is critical for optimal antitumor responses. Importantly, MDSCs present within murine tumors after CTLA-4 blockade showed increased expression of CSF-1R and were capable of suppressing T cell proliferation, and CSF-1/CSF-1R expression in the human tumors was not reduced after treatment with CTLA-4 blockade immunotherapy. Taken together, our findings suggest that CSF-1R-expressing MDSCs can be targeted to modulate the tumor microenvironment and that timing of CSF-1/CSF-1R signaling blockade is critical to improving responses to checkpoint based immunotherapy. Significance: Infiltration by immunosuppressive myeloid cells contributes to tumor immune escape and can render patients resistant or less responsive to therapeutic intervention with checkpoint blocking antibodies. Our data demonstrate that blocking CSF-1/CSF-1R signaling using a monoclonal antibody directed to CSF-1R can regulate both the number and function of tumor-infiltrating immunosuppressive myeloid cells. In addition, our findings suggest that reprogramming myeloid responses may be a key in effectively enhancing cancer immunotherapy, offering several new potential combination therapies for future clinical testing. More importantly for clinical trial design, the timing of these interventions is critical to achieving improved tumor protection.


Cell Reports | 2018

The CDK4/6 Inhibitor Abemaciclib Induces a T Cell Inflamed Tumor Microenvironment and Enhances the Efficacy of PD-L1 Checkpoint Blockade

David Schaer; Richard P. Beckmann; Jack Dempsey; Lysiane Huber; Amelie Forest; Nelusha Amaladas; Yanxia Li; Ying Cindy Wang; Erik R. Rasmussen; Darin Chin; Andrew Capen; Carmine Carpenito; Kirk A. Staschke; Linda A. Chung; Lacey M. Litchfield; Farhana F. Merzoug; Xueqian Gong; Philip W. Iversen; Sean Buchanan; Alfonso De Dios; Ruslan D. Novosiadly; Michael Kalos

Abemaciclib, an inhibitor of cyclin dependent kinases 4 and 6 (CDK4/6), has recently been approved for the treatment of hormone receptor-positive breast cancer. In this study, we use murine syngeneic tumor models and inxa0vitro assays to investigate the impact of abemaciclib on Txa0cells, the tumor immune microenvironment and the ability to combine with anti-PD-L1 blockade. Abemaciclib monotherapy resulted in tumor growth delay that was associated with an increased Txa0cell inflammatory signature in tumors. Combination with anti-PD-L1 therapy led to complete tumor regressions and immunological memory, accompanied by enhanced antigen presentation, a Txa0cell inflamed phenotype, and enhanced cell cycle control. Inxa0vitro, treatment with abemaciclib resulted in increased activation of human Txa0cells andxa0upregulated expression of antigen presentation genes in MCF-7 breast cancer cells. These data collectively support the clinical investigation of the combination of abemaciclib with agents such as anti-PD-L1 that modulate Txa0cell anti-tumor immunity.


Journal for ImmunoTherapy of Cancer | 2018

Targeting the TGFβ pathway with galunisertib, a TGFβRI small molecule inhibitor, promotes anti-tumor immunity leading to durable, complete responses, as monotherapy and in combination with checkpoint blockade

Rikke B. Holmgaard; David Schaer; Yanxia Li; Stephen Castaneda; Mary Murphy; Xiaohong Xu; Ivan Inigo; Julie Dobkin; Jason Manro; Philip W. Iversen; David Surguladze; Gerald Hall; Ruslan D. Novosiadly; Karim A. Benhadji; Gregory D. Plowman; Michael Kalos; Kyla Driscoll

BackgroundTGFβ signaling plays a pleotropic role in tumor biology, promoting tumor proliferation, invasion and metastasis, and escape from immune surveillance. Inhibiting TGFβ’s immune suppressive effects has become of particular interest as a way to increase the benefit of cancer immunotherapy. Here we utilized preclinical models to explore the impact of the clinical stage TGFβ pathway inhibitor, galunisertib, on anti-tumor immunity at clinically relevant doses.ResultsIn vitro treatment with galunisertib reversed TGFβ and regulatory T cell mediated suppression of human T cell proliferation. In vivo treatment of mice with established 4T1-LP tumors resulted in strong dose-dependent anti-tumor activity with close to 100% inhibition of tumor growth and complete regressions upon cessation of treatment in 50% of animals. This effect was CD8+ T cell dependent, and led to increased T cell numbers in treated tumors. Mice with durable regressions rejected tumor rechallenge, demonstrating the establishment of immunological memory. Consequently, mice that rejected immunogenic 4T1-LP tumors were able to resist rechallenge with poorly immunogenic 4 T1 parental cells, suggesting the development of a secondary immune response via antigen spreading as a consequence of effective tumor targeting. Combination of galunisertib with PD-L1 blockade resulted in improved tumor growth inhibition and complete regressions in colon carcinoma models, demonstrating the potential synergy when cotargeting TGFβ and PD-1/PD-L1 pathways. Combination therapy was associated with enhanced anti-tumor immune related gene expression profile that was accelerated compared to anti-PD-L1 monotherapy.ConclusionsTogether these data highlight the ability of galunisertib to modulate T cell immunity and the therapeutic potential of combining galunisertib with current PD-1/L1 immunotherapy.


Cancer Research | 2017

Abstract 583: The CDK4/6 inhibitor abemaciclib induces synergistic immune activation and antitumor efficacy in combination with PD-L1 blockade

Jack Dempsey; Lysiane Huber; Amelie Forest; Jennifer R. Stephens; Thompson N. Doman; Jason Manro; Andrew Capen; Robert Flack; Gregory P. Donoho; Sean Buchanan; Alfonso De Dios; Kyla Driscoll; Michael Kalos; Ruslan D. Novosiadly; Richard P. Beckmann; David Schaer

Targeting cyclin dependent kinases 4 and 6 (CDK4/6) with inhibitors such as abemaciclib has shown promise in early and late phase clinical trials in both breast cancer and NSCLC. While there is evidence that patients benefit from single-agent abemaciclib, combination strategies leveraging this compound together with immunotherapy are of interest for the treatment of these and other cancers. Consequently, it is important to understand if and how a cell cycle inhibitor can be combined with immunotherapy. However, because most preclinical studies have been performed using xenograft tumors in immune-compromised mice, the potential immunomodulatory effects of abemaciclib have not been adequately ascertained. To investigate the immune combinatorial potential of abemaciclib, we studied the effects of treatment alone and in combination with checkpoint immunotherapy in a murine syngeneic tumor model sensitive to abemaciclib using immuno-competent mice. Abemaciclib monotherapy of established murine CT26 tumors, which harbor KRAS G12C mutation and CDKN2A deletion, caused a dose-dependent delay in tumor growth. Surprisingly, gene expression analysis showed that treatment was associated with an increase in intra-tumor immune inflammation without major alteration in immune subset frequencies. Testing of various dosing regimens in this preclinical model found that monotherapy abemaciclib pretreatment followed by combination with anti-PD-L1 antibody therapy, induced an enhanced anti-tumor response compared to abemaciclib and anti-PD-L1 monotherapies. Optimal combination therapy exhibited superior anti-tumor efficacy, resulting in complete tumor regression (CR) in 50-60% of mice in a setting where anti-PD-L1 monotherapy showed little or no efficacy (0% CRs). Mice which maintained CRs after cessation of combination therapy were able to resist later CT26 rechallenge, demonstrating that abemaciclib in combination with anti-PD-L1 enabled the generation of an immunologic memory. Examination of intra-tumor gene expression during treatment found that combination therapy further amplified the immune/T cell activation signature compared to both monotherapies. Intra-tumoral suppression of cell cycle genes, which are indicative of inhibition of CDK4/6, was also greater during the combination therapy, suggesting that the effects anti-PD-L1 therapy may augment the cell cycle arrest induced by abemaciclib. Although it was uncertain if agents that inhibit cell proliferation could be combined with immunotherapy, these preclinical results demonstrate that it is possible to combine CDK4/6 inhibition by abemaciclib with checkpoint immunotherapy to improve tumor efficacy. The synergistic responses observed in terms of tumor efficacy, immune activation, and cell cycle control provides support for the clinical investigation of this combination. Citation Format: Jack Dempsey, Lysiane Huber, Amelie Forest, Jennifer R. Stephens, Thompson N. Doman, Jason Manro, Andrew Capen, Robert S. Flack, Gregory P. Donoho, Sean Buchanan, Alfonso De Dios, Kyla Driscoll, Michael Kalos, Ruslan Novosiadly, Richard P. Beckmann, David A. Schaer. The CDK4/6 inhibitor abemaciclib induces synergistic immune activation and antitumor efficacy in combination with PD-L1 blockade [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 583. doi:10.1158/1538-7445.AM2017-583


Cancer immunology research | 2016

Abstract A091: Targeting the TGFb pathway with galunisertib, a TGFbRI SMI, promotes antitumor immunity leading to durable, complete responses, as monotherapy and in combination with checkpoint inhibition

David Schaer; Yanxia Li; Stephen Castaneda; Ivan Inigo; David Surguladze; Xiaohong Xu; Desiree Nugent; Mary Murphy; Gerald Hall; Karim A. Benhadji; Susan C. Guba; Yiwen Li; Michael Kalos; Kyla Driscoll

TGFb signaling is known to play a central role in tumor biology, via inducing and/or enhancing tumor cell growth and differentiation, modulating the extracellular matrix in the stroma, inducing epithelial to mesenchymal transition, modulating angiogenesis, and inhibiting immune surveillance and anti-tumor immunity. Galunisertib is a pharmacological inhibitor of the TGFb pathway which acts by inhibiting signaling though TGFbRI. Galunisertib is currently being evaluated clinically in several Phase I and II studies; as a monotherapy, galunisertib has shown antitumor activity against a variety of tumors, including durable and long-term responses in patients with glioma. To explore the impact of Galunisertib monotherapy on anti-tumor T cell immunity, we utilized murine tumor models. Treatment of mice with well-established 4T1-LP (poorly immunogenic 4T1 breast tumor engineered to express luciferase) implanted in the mammary fat pad resulted in strong dose-dependent anti-tumor activity with nearly 100% inhibition of tumor growth across doses during the dosing period, with complete tumor responses upon cessation of treatment in ~50% of animals at the highest dose tested; depletion studies demonstrated that regression of 4T1-LP was dependent on the presence of CD8+ T cells. Rechallenge of treated, tumor free mice resulted in complete rejection of 4T1-LP tumor cells but no rejection of EMT6-LM2 tumor cells, demonstrating the establishment of a durable response and immunological memory. Treatment of mice bearing established parental 4T1 tumors in the mammary fat pad resulted in no significant inhibition of tumor growth, indicating that the presence of a foreign antigen (i.e. LP), potentially enhanced the ability to regress the 4T1-LP derivative. Animals that rejected the immunogenic 4T1-LP tumors were able to also reject 4T1 parental cells upon rechallenge, suggesting the development of a secondary immune response via antigen spreading as a consequence of effective tumor targeting. In the CT26 murine colon carcinoma model, treatment of established tumors with galunisertib or anti-PD-L1 as monotherapies resulted in tumor growth inhibition compared to control of 75% and 86%, respectively (T/C values of 25% and 14%); complete responders were observed in about 20% of treated animals in both monotherapy groups. Combination of galunisertib with anti-PD-L1 resulted in an enhanced tumor growth inhibition of 98% (T/C value of ~2%), and a complete response rate of ~50%, suggesting at least additive activity with potential for synergy when targeting the TGFb and PD-1 pathways. Taken together, these data demonstrate the potential for galunisertib treatment to enhance the development of anti- tumor T cell immunity, which can be enhanced by combinations with immune check point inhibitors. Citation Format: David Schaer, Yanxia Li, Stephen Castaneda, Ivan Inigo, David Surguladze, Xiaohong Xu, Desiree Nugent, Mary Murphy, Gerald Hall, Karim Benhadji, Susan Guba, Yiwen Li, Michael Kalos, Kyla Driscoll. Targeting the TGFb pathway with galunisertib, a TGFbRI SMI, promotes antitumor immunity leading to durable, complete responses, as monotherapy and in combination with checkpoint inhibition. [abstract]. In: Proceedings of the CRI-CIMT-EATI-AACR Inaugural International Cancer Immunotherapy Conference: Translating Science into Survival; September 16-19, 2015; New York, NY. Philadelphia (PA): AACR; Cancer Immunol Res 2016;4(1 Suppl):Abstract nr A091.


Journal for ImmunoTherapy of Cancer | 2015

Targeting the TGFβ pathway with galunisertib, a TGFβRI SMI, promotes anti-tumor immunity leading to durable, complete responses, as monotherapy and in combination with checkpoint inhibition.

David Schaer; Yanxia Li; Stephen Castaneda; Ivan Inigo; David Surguladze; Xiaohong Xu; Desiree Nugent; Mary Murphy; Gerald Hall; Karim A. Benhadji; Susan C. Guba; Yiwen Li; Michael Kalos; Kyla Driscoll

TGFβ signaling is known to play a central role in tumor biology, via inducing and/or enhancing tumor cell growth and differentiation, modulating the extracellular matrix in the stroma, inducing epithelial to mesenchymal transition, modulating angiogenesis, and inhibiting immune surveillance and anti-tumor immunity. Galunisertib is a pharmacological inhibitor of the TGFβ pathway which acts by inhibiting signaling though TGFβRI. Galunisertib is currently being evaluated clinically in several Phase I and II studies; as a monotherapy, galunisertib has shown antitumor activity against a variety of tumors, including durable and long-term responses in patients with glioma. n nTo explore the impact of Galunisertib monotherapy on anti-tumor T cell immunity, we utilized murine tumor models. Treatment of mice with well-established 4T1-LP (poorly immunogenic 4T1 breast tumor engineered to express luciferase) implanted in the mammary fat pad resulted in strong dose-dependent anti-tumor activity with nearly 100% inhibition of tumor growth across doses during the dosing period, with complete tumor responses upon cessation of treatment in ~50% of animals at the highest dose tested; depletion studies demonstrated that regression of 4T1-LP was dependent on the presence of CD8+ T cells. Rechallenge of treated, tumor free mice resulted in complete rejection of 4T1-LP tumor cells but no rejection of EMT6-LM2 tumor cells, demonstrating the establishment of a durable response and immunological memory. Treatment of mice bearing established parental 4T1 tumors in the mammary fat pad resulted in no significant inhibition of tumor growth, indicating that the presence of a foreign antigen (i.e. LP), potentially enhanced the ability to regress the 4T1-LP derivative. Animals that rejected the immunogenic 4T1-LP tumors were able to also reject 4T1 parental cells upon rechallenge, suggesting the development of a secondary immune response via antigen spreading as a consequence of effective tumor targeting. In the CT26 murine colon carcinoma model, treatment of established tumors with galunisertib or anti-PD-L1 as monotherapies resulted in tumor growth inhibition compared to control of 75% and 86%, respectively (T/C values of 25% and 14%); complete responders were observed in about 20% of treated animals in both monotherapy groups. Combination of galunisertib with anti-PD-L1 resulted in an enhanced tumor growth inhibition of 98% (T/C value of ~2%), and a complete response rate of ~50%, suggesting at least additive activity with potential for synergy when targeting the TGFβ and PD-1 pathways. Taken together, these data demonstrate the potential for galunisertib treatment to enhance the development of anti-tumor T cell immunity, which can be enhanced by combinations with immune check point inhibitors.


mAbs | 2018

FcγRIIIa-dependent IFN-γ release in whole blood assay is predictive of therapeutic IgG1 antibodies safety

Nada S. Alakhras; Jiabin Qiu; Guilherme V. Rocha; Derrick Ryan Witcher; Anja Koester; Jinsam You; David Schaer; Rikke B. Holmgaard; Kyla Driscoll; Jeffrey A. Willy; Laurent P. Malherbe

ABSTRACT Immunomodulatory monoclonal IgG1 antibodies developed for cancer and autoimmune disease have an inherent risk of systemic release of pro-inflammatory cytokines. In vitro cytokine release assays are currently used to predict cytokine release syndrome (CRS) risk, but the validation of these preclinical tools suffers from the limited number of characterized CRS-inducing IgG1 antibodies and the poor understanding of the mechanisms regulating cytokine release. Here, we incubated human whole blood from naïve healthy volunteers with four monoclonal IgG1 antibodies with different proven or predicted capacity to elicit CRS in clinic and measured cytokine release using a multiplex assay. We found that, in contrast to anti-CD52 antibodies (Campath-1H homolog) that elicited high level of multiple inflammatory cytokines from human blood cells in vitro, other IgG1 antibodies with CRS-inducing potential consistently induced release of a single tested cytokine, interferon (IFN)-γ, with a smaller magnitude than Campath. IFN-γ expression was observed as early as 2–4 h after incubation, mediated by natural killer cells, and dependent upon tumor necrosis factor and FcγRIII. Importantly, the magnitude of the IFN-γ response elicited by IgG1 antibodies with CRS-inducing potential was determined by donor FcγRIIIa-V158F polymorphism. Overall, our results highlight the importance of FcγRIIIa-dependent IFN-γ release in preclinical cytokine release assay for the prediction of CRS risk associated with therapeutic IgG1 antibodies.


Cancer Research | 2017

Abstract 955: LY3200882, a novel, highly selective TGFβRI small molecule inhibitor

Huaxing Pei; Saravanan Parthasarathy; Sajan Joseph; William Thomas Mcmillen; Xiaohong Xu; Stephen Castaneda; Ivan Inigo; Karen S. Britt; Bryan D. Anderson; Gaiying Zhao; Scott Sawyer; Douglas Wade Beight; Talbi Kaoudi; Chandrasekar V. Iyer; Huimin Bian; Amy Pappas; David Surguladze; David Schaer; Karim A. Benhadji; Michael Kalos; Kyla Driscoll

The transforming growth factor β (TGFβ) signaling pathway is a pleiotropic cellular pathway that plays a critical role in cancer. In fact, aggressive tumors are typically associated with high ligand levels and thus associated with poor prognosis in various tumor types. Cancer cells use autocrine and paracrine TGFβ signaling to modulate tumor cells and the tumor microenvironment leading to a highly invasive and metastatic phenotype, inducing and increasing tumor vascularization, modulating the extracellular matrix in the stroma, and inhibiting immune surveillance and antitumor immunity. Clinical studies with galunisertib (aka LY2157299 monohydrate), a small molecule inhibitor targeting the TGFβ pathway, have provided proof of concept data supporting the role of TGFβ in cancer and the utility of targeting the TGFβ pathway. Here we describe the identification of LY3200882, a next generation small molecule inhibitor of TGF-β receptor type 1 (TGFβRI). The molecule is a potent, highly selective inhibitor of TGFβRI embodied in a structural platform with a synthetically scalable route. It is an ATP competitive inhibitor of the serine-threonine kinase domain of TGFβRI. Mechanism of action studies reveal revealed that LY3200882 inhibits various pro-tumorigenic activities. LY3200882 potently inhibits TGFβ mediated SMAD phosphorylation in vitro in tumor and immune cells and in vivo in subcutaneous tumors in a dose dependent fashion. In preclinical tumor models, LY3200882 showed potent anti-tumor activity in the orthotopic 4T1-LP model of triple negative breast cancer and this activity correlated with enhanced tumor infiltrating lymphocytes in the tumor microenvironment. Durable tumor regressions in the orthotopic 4T1-LP model were observed and rechallenge of congenic tumors resulted in complete rejection in all mice. In in vitro immune suppression assays, LY3200882 has shown the ability to rescue TGFβ1 suppressed or T regulatory cell suppressed naive T cell activity and restore proliferation. Therefore, LY3200882 shows promising activity as an immune modulatory agent. In addition, LY3200882 has shown anti-metastatic activity in vitro in migration assays as well as in vivo in an experimental metastasis tumor model (intravenous EMT6-LM2 model of triple negative breast cancer). Finally, LY3200882 shows combinatorial anti-tumor benefits with checkpoint inhibition (anti-PD-L1) in the syngeneic CT26 model. In conclusion, we have developed a novel potent and highly selective small molecule inhibitor of TGFβRI for the treatment of cancer. Citation Format: Huaxing Pei, Saravanan Parthasarathy, Sajan Joseph, William McMillen, Xiaohong Xu, Stephen Castaneda, Ivan Inigo, Karen Britt, Bryan Anderson, Gaiying Zhao, Scott Sawyer, Douglas Beight, Talbi Kaoudi, Chandrasekar Iyer, Huimin Bian, Amy Pappas, David Surguladze, David Schaer, Karim Benhadji, Michael Kalos, Kyla Driscoll. LY3200882, a novel, highly selective TGFβRI small molecule inhibitor [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 955. doi:10.1158/1538-7445.AM2017-955


Cancer Research | 2016

Abstract 1415: Targeting the TGFβ pathway with galunisertib, a small molecule inhibitor of TGFβRI, promotes anti-tumor immunity leading to durable, complete responses, as monotherapy and in combination with checkpoint inhibition

David Schaer; Kyla Driscoll

TGFβ signaling is known to play a central role in tumor biology, via inducing and/or enhancing tumor cell growth and differentiation, modulating the extracellular matrix in the stroma, inducing epithelial to mesenchymal transition, modulating angiogenesis, and inhibiting immune surveillance and anti-tumor immunity. Galunisertib is a pharmacological inhibitor of the TGFβ pathway which acts by inhibiting signaling though TGFβRI. Galunisertib is currently being evaluated clinically in several Phase I and II studies; as a monotherapy, galunisertib has shown antitumor activity against a variety of tumors, including durable and long-term responses in patients with glioma. To explore the impact of Galunisertib monotherapy on anti-tumor T cell immunity, we utilized murine tumor models. Treatment of mice with 4T1-LP (poorly immunogenic 4T1 breast tumor engineered to express luciferase) implanted in the mammary fat pad resulted in strong dose-dependent anti-tumor activity with nearly 100% inhibition of tumor growth across doses during the dosing period, with complete tumor rejection upon cessation of treatment in ∼50% of animals at the highest dose tested; depletion studies demonstrated that rejection of 4T1-LP was dependent on the presence of CD8+ T cells. Rechallenge of treated, tumor free mice resulted in complete rejection of 4T1-LP tumor cells but no rejection of EMT6-LM2 tumor cells, demonstrating the establishment of a durable response and immunological memory. Treatment of mice bearing parental 4T1 tumors in the mammary fat pad resulted in no significant inhibition of tumor growth, indicating that the presence of a foreign antigen (i.e. LP), potentially enhanced the ability to reject the 4T1-LP derivative. Animals that rejected the immunogenic 4T1-LP cells were able to also reject 4T1 parental cells upon rechallenge, suggesting the development of a secondary immune response via antigen spreading as a consequence of effective tumor targeting. In the CT26 murine colon carcinoma model, treatment with galunisertib or anti-PD-L1 as monotherapies resulted in tumor growth inhibition compared to control of 75% and 86%, respectively (T/C values of 25% and 14%); complete responders were observed in about 20% of treated animals in both monotherapy groups. Combination of galunisertib with anti-PD-L1 resulted in an enhanced tumor growth inhibition of 98% (T/C value of ∼2%), and a complete response rate of ∼50%, suggesting at least additive activity with potential for synergy when targeting the TGFβ and PD-1 pathways. Taken together, these data demonstrate the potential for galunisertib treatment to enhance the development of anti- tumor T cell immunity, which can be enhanced by combinations with immune check point inhibitors. Citation Format: David Schaer, Kyla Driscoll. Targeting the TGFβ pathway with galunisertib, a small molecule inhibitor of TGFβRI, promotes anti-tumor immunity leading to durable, complete responses, as monotherapy and in combination with checkpoint inhibition. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr 1415.

Collaboration


Dive into the David Schaer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yanxia Li

Eli Lilly and Company

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge