Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David Schwarzer is active.

Publication


Featured researches published by David Schwarzer.


Molecular Microbiology | 2006

Evolution of bacteriophages infecting encapsulated bacteria: lessons from Escherichia coli K1‐specific phages

Katharina Stummeyer; David Schwarzer; Heike Claus; Ulrich Vogel; Rita Gerardy-Schahn; Martina Mühlenhoff

Bacterial capsules are not only important virulence factors, but also provide attachment sites for bacteriophages that possess capsule degrading enzymes as tailspike proteins. To gain insight into the evolution of these specialized viruses, we studied a panel of tailed phages specific for Escherichia coli K1, a neuroinvasive pathogen with a polysialic acid capsule. Genome sequencing of two lytic K1‐phages and comparative analyses including a K1‐prophage revealed that K1‐phages did not evolve from a common ancestor. By contrast, each phage is related to a different progenitor type, namely T7‐, SP6‐, and P22‐like phages, and gained new host specificity by horizontal uptake of an endosialidase gene. The new tailspikes emerged by combining endosialidase domains with the capsid binding module of the respective ancestor. For SP6‐like phages, we identified a degenerated tailspike protein which now acts as versatile adaptor protein interconnecting tail and newly acquired tailspikes and demonstrate that this adapter utilizes an N‐terminal undecapeptide interface to bind otherwise unrelated tailspikes. Combining biochemical and sequence analyses with available structural data, we provide new molecular insight into basic mechanisms that allow changes in host specificity while a conserved head and tail architecture is maintained. Thereby, the present study contributes not only to an improved understanding of phage evolution and host‐range extension but may also facilitate the on purpose design of therapeutic phages based on well‐characterized template phages.


Journal of Biological Chemistry | 2007

Characterization of a Novel Intramolecular Chaperone Domain Conserved in Endosialidases and Other Bacteriophage Tail Spike and Fiber Proteins

David Schwarzer; Katharina Stummeyer; Rita Gerardy-Schahn; Martina Mühlenhoff

Folding and assembly of endosialidases, the trimeric tail spike proteins of Escherichia coli K1-specific bacteriophages, crucially depend on their C-terminal domain (CTD). Homologous CTDs were identified in phage proteins belonging to three different protein families: neck appendage proteins of several Bacillus phages, L-shaped tail fibers of coliphage T5, and K5 lyases, the tail spike proteins of phages infecting E. coli K5. By analyzing a representative of each family, we show that in all cases, the CTD is cleaved off after a strictly conserved serine residue and alanine substitution prevented cleavage. Further structural and functional analyses revealed that (i) CTDs are autonomous domains with a high α-helical content; (ii) proteolytically released CTDs assemble into hexamers, which are most likely dimers of trimers; (iii) highly conserved amino acids within the CTD are indispensable for CTD-mediated folding and complex formation; (iv) CTDs can be exchanged between proteins of different families; and (v) proteolytic cleavage is essential to stabilize the native protein complex. Data obtained for full-length and proteolytically processed endosialidase variants suggest that release of the CTD increases the unfolding barrier, trapping the mature trimer in a kinetically stable conformation. In summary, we characterize the CTD as a novel C-terminal chaperone domain, which assists folding and assembly of unrelated phage proteins.


Journal of Virology | 2012

A multivalent adsorption apparatus explains the broad host range of phage phi92: a comprehensive genomic and structural analysis.

David Schwarzer; Falk F. R. Buettner; Christopher Browning; Sergey Nazarov; Wolfgang Rabsch; Andrea Bethe; Astrid Oberbeck; Valorie D. Bowman; Katharina Stummeyer; Martina Mühlenhoff; Petr G. Leiman; Rita Gerardy-Schahn

ABSTRACT Bacteriophage phi92 is a large, lytic myovirus isolated in 1983 from pathogenic Escherichia coli strains that carry a polysialic acid capsule. Here we report the genome organization of phi92, the cryoelectron microscopy reconstruction of its virion, and the reinvestigation of its host specificity. The genome consists of a linear, double-stranded 148,612-bp DNA sequence containing 248 potential open reading frames and 11 putative tRNA genes. Orthologs were found for 130 of the predicted proteins. Most of the virion proteins showed significant sequence similarities to proteins of myoviruses rv5 and PVP-SE1, indicating that phi92 is a new member of the novel genus of rv5-like phages. Reinvestigation of phi92 host specificity showed that the host range is not limited to polysialic acid-encapsulated Escherichia coli but includes most laboratory strains of Escherichia coli and many Salmonella strains. Structure analysis of the phi92 virion demonstrated the presence of four different types of tail fibers and/or tailspikes, which enable the phage to use attachment sites on encapsulated and nonencapsulated bacteria. With this report, we provide the first detailed description of a multivalent, multispecies phage armed with a host cell adsorption apparatus resembling a nanosized Swiss army knife. The genome, structure, and, in particular, the organization of the baseplate of phi92 demonstrate how a bacteriophage can evolve into a multi-pathogen-killing agent.


Journal of Molecular Biology | 2010

Structural basis for the recognition and cleavage of polysialic acid by the bacteriophage K1F tailspike protein EndoNF.

Eike C. Schulz; David Schwarzer; Martin Frank; Katharina Stummeyer; Martina Mühlenhoff; Achim Dickmanns; Rita Gerardy-Schahn; Ralf Ficner

An alpha-2,8-linked polysialic acid (polySia) capsule confers immune tolerance to neuroinvasive, pathogenic prokaryotes such as Escherichia coli K1 and Neisseria meningitidis and supports host infection by means of molecular mimicry. Bacteriophages of the K1 family, infecting E. coli K1, specifically recognize and degrade this polySia capsule utilizing tailspike endosialidases. While the crystal structure for the catalytic domain of the endosialidase of bacteriophage K1F (endoNF) has been solved, there is yet no structural information on the mode of polySia binding and cleavage available. The crystal structure of activity deficient active-site mutants of the homotrimeric endoNF cocrystallized with oligomeric sialic acid identified three independent polySia binding sites in each endoNF monomer. The bound oligomeric sialic acid displays distinct conformations at each site. In the active site, a Sia(3) molecule is bound in an extended conformation representing the enzyme-product complex. Structural and biochemical data supported by molecular modeling enable to propose a reaction mechanism for polySia cleavage by endoNF.


Hepatology | 2014

Polysialic acid/neural cell adhesion molecule modulates the formation of ductular reactions in liver injury

Atsunori Tsuchiya; Wei-Yu Lu; Birgit Weinhold; Luke Boulter; Benjamin M. Stutchfield; Michael Williams; Rachel Guest; Sarah E. Minnis-Lyons; Alison C. MacKinnon; David Schwarzer; Takafumi Ichida; Minoru Nomoto; Yutaka Aoyagi; Rita Gerardy-Schahn; Stuart J. Forbes

In severe liver injury, ductular reactions (DRs) containing bipotential hepatic progenitor cells (HPCs) branch from the portal tract. Neural cell adhesion molecule (NCAM) marks bile ducts and DRs, but not mature hepatocytes. NCAM mediates interactions between cells and surrounding matrix; however, its role in liver development and regeneration is undefined. Polysialic acid (polySia), a unique posttranslational modifier of NCAM, is produced by the enzymes, ST8SiaII and ST8SiaIV, and weakens NCAM interactions. The role of polySia with NCAM synthesizing enzymes ST8SiaII and ST8SiaIV were examined in HPCs in vivo using the choline‐deficient ethionine‐supplemented and 3,5‐diethoxycarbonyl‐1,4‐dihydrocollidine diet models of liver injury and regeneration, in vitro using models of proliferation, differentiation, and migration, and by use of mouse models with gene defects in the polysialyltransferases (St8sia 2+/−4+/−, and St8sia2−/−4−/−). We show that, during liver development, polySia is required for the correct formation of bile ducts because gene defects in both the polysialyltransferases (St8sia2+/−4+/− and St8sia2−/−4−/− mice) caused abnormal bile duct development. In normal liver, there is minimal polySia production and few ductular NCAM+ cells. Subsequent to injury, NCAM+ cells expand and polySia is produced by DRs/HPCs through ST8SiaIV. PolySia weakens cell‐cell and cell‐matrix interactions, facilitating HGF‐induced migration. Differentiation of HPCs to hepatocytes in vitro results in both transcriptional down‐regulation of polySia and cleavage of polySia‐NCAM. Cleavage of polySia by endosialidase (endoN) during liver regeneration reduces migration of DRs into parenchyma. Conclusion: PolySia modification of NCAM+ ductules weakens cell‐cell and cell‐matrix interactions, allowing DRs/HPCs to migrate for normal development and regeneration. Modulation of polySia levels may provide a therapeutic option in liver regeneration. (Hepatology 2014;60:1727–1740)


Biomacromolecules | 2008

Synthesis and Biological Evaluation of a Polysialic Acid-Based Hydrogel as Enzymatically Degradable Scaffold Material for Tissue Engineering

Silke Berski; Jeroen van Bergeijk; David Schwarzer; Yvonne Stark; Cornelia Kasper; Thomas Scheper; Claudia Grothe; Rita Gerardy-Schahn; Andreas Kirschning; Gerald Dräger

Restorative medicine has a constant need for improved scaffold materials. Degradable biopolymers often suffer from uncontrolled chemical or enzymatic hydrolysis by the host. The need for a second surgery on the other hand is a major drawback for nondegradable scaffold materials. In this paper we report the design and synthesis of a novel polysialic acid-based hydrogel with promising properties. Hydrogel synthesis was optimized and enzymatic degradation was studied using a phage-born endosialidase. After addition of endosialidase, hydrogels readily degraded depending on the amount of initially used cross-linker within 2 to 11 days. This polysialic acid hydrogel is not cytotoxic, completely stable under physiological conditions, and could be evaluated as growth support for PC12 cells. Here, additional coating with collagen I, poly-L-lysine or matrigel is mandatory to improve the properties of the material.


Cellular and Molecular Life Sciences | 2013

Soluble polysialylated NCAM: a novel player of the innate immune system in the lung

Christina Ulm; Mona Saffarzadeh; Poornima Mahavadi; Sandra Müller; Gerlinde Prem; Farhan Saboor; Peter Simon; Ralf Middendorff; Hildegard Geyer; Ingrid Henneke; Nils Bayer; Susanne Rinné; Thomas Lütteke; Eva Böttcher-Friebertshäuser; Rita Gerardy-Schahn; David Schwarzer; Martina Mühlenhoff; Klaus T. Preissner; Andreas Günther; Rudolf Geyer; Sebastian P. Galuska

Posttranslational modification of the neural cell adhesion molecule (NCAM) by polysialic acid (polySia) is well studied in the nervous system and described as a dynamic modulator of plastic processes like precursor cell migration, axon fasciculation, and synaptic plasticity. Here, we describe a novel function of polysialylated NCAM (polySia-NCAM) in innate immunity of the lung. In mature lung tissue of healthy donors, polySia was exclusively attached to the transmembrane isoform NCAM-140 and located to intracellular compartments of epithelial cells. In patients with chronic obstructive pulmonary disease, however, increased polySia levels and processing of the NCAM carrier were observed. Processing of polysialylated NCAM was reproduced in a mouse model by bleomycin administration leading to an activation of the inflammasome and secretion of interleukin (IL)-1β. As shown in a cell culture model, polySia-NCAM-140 was kept in the late trans-Golgi apparatus of lung epithelial cells and stimulation by IL-1β or lipopolysaccharide induced metalloprotease-mediated ectodomain shedding, resulting in the secretion of soluble polySia-NCAM. Interestingly, polySia chains of secreted NCAM neutralized the cytotoxic activity of extracellular histones as well as DNA/histone-network-containing “neutrophil extracellular traps”, which are formed during invasion of microorganisms. Thus, shedding of polySia-NCAM by lung epithelial cells may provide a host-protective mechanism to reduce tissue damage during inflammatory processes.


Nature Structural & Molecular Biology | 2010

Crystal structure of an intramolecular chaperone mediating triple–β-helix folding.

Eike C. Schulz; Achim Dickmanns; Henning Urlaub; Andreas Schmitt; Martina Mühlenhoff; Katharina Stummeyer; David Schwarzer; Rita Gerardy-Schahn; Ralf Ficner

Protein folding is often mediated by molecular chaperones. Recently, a novel class of intramolecular chaperones has been identified in tailspike proteins of evolutionarily distant viruses, which require a C-terminal chaperone for correct folding. The highly homologous chaperone domains are interchangeable between pre-proteins and release themselves after protein folding. Here we report the crystal structures of two intramolecular chaperone domains in either the released or the pre-cleaved form, revealing the role of the chaperone domain in the formation of a triple–β-helix fold. Tentacle-like protrusions enclose the polypeptide chains of the pre-protein during the folding process. After the assembly, a sensory mechanism for correctly folded β-helices triggers a serine-lysine catalytic dyad to autoproteolytically release the mature protein. Sequence analysis shows a conservation of the intramolecular chaperones in functionally unrelated proteins sharing β-helices as a common structural motif.


Journal of Biological Chemistry | 2009

Proteolytic Release of the Intramolecular Chaperone Domain Confers Processivity to Endosialidase F

David Schwarzer; Katharina Stummeyer; Thomas Erwin Haselhorst; Friedrich Freiberger; Bastian Rode; Melanie Grove; Thomas Scheper; Mark von Itzstein; Martina Mühlenhoff; Rita Gerardy-Schahn

Endosialidases (endoNs), as identified so far, are tailspike proteins of bacteriophages that specifically bind and degrade the α2,8-linked polysialic acid (polySia) capsules of their hosts. The crystal structure solved for the catalytic domain of endoN from coliphage K1F (endoNF) revealed a functional trimer. Folding of the catalytic trimer is mediated by an intramolecular C-terminal chaperone domain. Release of the chaperone from the folded protein confers kinetic stability to endoNF. In mutant c(S), the replacement of serine 911 by alanine prevents proteolysis and generates an enzyme that varies in activity from wild type. Using soluble polySia as substrate a 3-times higher activity was detected while evaluation with immobilized polySia revealed a 190-fold reduced activity. Importantly, activity of c(S) did not differ from wild type with tetrameric sialic acid, the minimal endoNF substrate. Furthermore, we show that the presence of the chaperone domain in c(S) destabilizes binding to polySia in a similar way as did selective disruption of a polySia binding site in the stalk domain. The improved catalytic efficiency toward soluble polySia observed in these mutants can be explained by higher dissociation and association probabilities, whereas inversely, an impaired processivity was found. The fact that endoNF is a processive enzyme introduces a new molecular basis to explain capsule degradation by bacteriophages, which until now has been regarded as a result of cooperative interaction of tailspike proteins. Moreover, knowing that release of the chaperone domain confers kinetic stability and processivity, conservation of the proteolytic process can be explained by its importance in phage evolution.


Topics in Current Chemistry | 2012

Endosialidases: Versatile Tools for the Study of Polysialic Acid

Elina Jakobsson; David Schwarzer; Anne Jokilammi; Jukka Finne

Polysialic acid is an α2,8-linked N-acetylneuraminic acid polymer found on the surface of both bacterial and eukaryotic cells. Endosialidases are bacteriophage-borne glycosyl hydrolases that specifically cleave polysialic acid. The crystal structure of an endosialidase reveals a trimeric mushroom-shaped molecule which, in addition to the active site, harbors two additional polysialic acid binding sites. Folding of the protein crucially depends on an intramolecular C-terminal chaperone domain that is proteolytically released in an intramolecular reaction. Based on structural data and previous considerations, an updated catalytic mechanism is discussed. Endosialidases degrade polysialic acid in a processive mode of action, and a model for its mechanism is suggested. The review summarizes the structural and biochemical elucidations of the last decade and the importance of endosialidases in biochemical and medical applications. Active endosialidases are important tools in studies on the biological roles of polysialic acid, such as the pathogenesis of septicemia and meningitis by polysialic acid-encapsulated bacteria, or its role as a modulator of the adhesion and interactions of neural and other cells. Endosialidase mutants that have lost their polysialic acid cleaving activity while retaining their polysialic acid binding capability have been fused to green fluorescent protein to provide an efficient tool for the specific detection of polysialic acid.

Collaboration


Dive into the David Schwarzer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Petr G. Leiman

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eike C. Schulz

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ralf Ficner

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar

Christopher Browning

École Polytechnique Fédérale de Lausanne

View shared research outputs
Researchain Logo
Decentralizing Knowledge