Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David Sharpe is active.

Publication


Featured researches published by David Sharpe.


Organic and Biomolecular Chemistry | 2011

Effect of surfactants on the chemiluminescence of acridinium dimethylphenyl ester labels and their conjugates

David Sharpe; David Wen

Chemiluminescent acridinium dimethylphenyl esters, containing two methyl groups flanking the phenolic ester bond, display excellent chemiluminescence stability and are used as labels in automated immunoassays for clinical diagnostics. Light emission from these labels is triggered with alkaline peroxide in the presence of the cationic surfactant cetyltrimethylammonium chloride. Under these conditions, light emission is rapid and is complete in <5 s. In the present study we examined the effect of various surfactants on light emission from acridinium dimethylphenyl ester labels and their conjugates containing hydrophilic linkers derived either from hexa(ethylene)glycol or a sulfobetaine zwitterion. Sulfobetaine zwitterions are very polar and incorporation of these functional groups in acridinium dimethyphenyl esters and their conjugates represents a new approach to improving the aqueous solubility of these chemiluminescent labels. Our results indicate that in general, surfactants affect light emission from these labels and their conjugates by two discrete mechanisms. Cationic surfactants, but not anionic or non-ionic surfactants, accelerate overall light emission kinetics and a more modest effect is observed with zwitterionic surfactants. Surfactants also enhance total light output and the magnitude of this enhancement is maximal for cationic surfactants and a sulfobetaine zwitterionic surfactant. These observations are the first to clearly delineate the role of the surfactant on the chemiluminescence reaction pathway of acridinium esters and can be rationalized based on known effects of surfactant aggregates on bimolecular and unimolecular reactions.


Organic and Biomolecular Chemistry | 2012

Chemiluminescence from alkoxy-substituted acridinium dimethylphenyl ester labels

David Sharpe; David Wen

Chemiluminescent acridinium dimethylphenyl ester labels are used in automated immunoassays for clinical diagnostics. Light emission from these labels is triggered by alkaline peroxide in the presence of the cationic surfactant cetyltrimethylammonium chloride (CTAC). The surfactant plays a critical role in the chemiluminescence process of these labels by both accelerating their emission kinetics and increasing total light output enabling high throughout and improved assay sensitivity in automated immunoassays. Despite the surfactants crucial role in the chemiluminescent reaction, no study has investigated how structural perturbations in the acridinium ring could impact the influence of the surfactant. We describe herein the synthesis and properties of three new alkoxy-substituted, acridinium dimethylphenyl esters where the nature of the alkoxy group in the acridinium ring was varied (hydrophobic or hydrophilic). Chemiluminescence measurements of these alkoxy-substituted labels indicate that hydrophilic functional groups in the acridinium ring, in particular sulfobetaine zwitterions, disrupt surfactant-mediated compression of emission times but not enhancement of light yield. These results support the hypothesis that surfactant-mediated effects require the binding of two different reaction intermediates to surfactant aggregates and, that surfactants influence light emission from acridinium esters by two separate mechanisms. Our studies also indicate that preservation of both surfactant effects on acridinium ester chemiluminescence and low non-specific binding of the label can be achieved with a relatively hydrophobic acridinium ring coupled to a hydrophilic phenolic ester leaving group.


Analytical Biochemistry | 2010

Enhanced immunoassay sensitivity using chemiluminescent acridinium esters with increased light output

David Sharpe; Jim Costello; Qingping Jiang


Archive | 1999

Near infrared chemiluminescent acridinium compounds and uses thereof

Qingping Jiang; David Sharpe; Say-Jong Law


Archive | 2002

Applications of acridinium compounds and derivatives in homogeneous assays

Todd Sells; Hartmut Schroeder; Guohan Yang; David Sharpe; Qingping Jiang; Hana Lukinsky; Say-Jong Law


Archive | 2002

Acridinium ester labels having hydrophilic modifiers

David Sharpe; Qingping Jiang


Organic and Biomolecular Chemistry | 2012

Zwitterionic reagents for labeling, cross-linking and improving the performance of chemiluminescent immunoassays

David Sharpe; David Wen


Archive | 2006

Chemiluminescent acridinium compounds and analogues thereof as substrates of hydrolytic enzymes

Qingping Jiang; David Sharpe; Wen-Jee Wong; Say-Jong Law


Organic and Biomolecular Chemistry | 2013

Synthesis and properties of differently charged chemiluminescent acridinium ester labels.

David Sharpe


Organic and Biomolecular Chemistry | 2014

Synthesis and properties of chemiluminescent acridinium ester labels with fluorous tags

David Wen; David Sharpe

Collaboration


Dive into the David Sharpe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge