Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David Sheldon Schultz is active.

Publication


Featured researches published by David Sheldon Schultz.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2010

Antithrombogenic Modification of Small-Diameter Microfibrous Vascular Grafts

Craig K. Hashi; Nikita Derugin; Randall Raphael R. Janairo; Randall J. Lee; David Sheldon Schultz; Jeffrey C. Lotz; Song Li

Objective—To develop small-diameter vascular grafts with a microstructure similar to native matrix fibers and with chemically modified microfibers to prevent thrombosis. Methods and Results—Microfibrous vascular grafts (1-mm internal diameter) were fabricated by electrospinning, and hirudin was conjugated to the poly (l-lactic acid) microfibers through an intermediate linker of poly(ethylene glycol). The modified microfibrous vascular grafts were able to reduce platelet adhesion/aggregation onto microfibrous scaffolds, and immobilized hirudin suppressed thrombin activity that may interact with the scaffolds. This 2-pronged approach to modify microfibrous vascular graft showed significantly improved patency (from 50% to 83%) and facilitated endothelialization, and the microfibrous structure of the vascular grafts allowed efficient graft remodeling and integration, with the improvement of mechanical property (elastic modulus) from 3.5 to 11.1 MPa after 6 months of implantation. Conclusion—Microfibrous vascular grafts with antithrombogenic microfibers can be used as small-diameter grafts, with excellent patency and remodeling capability.


Investigative Ophthalmology & Visual Science | 2008

Structural Factors That Mediate Scleral Stiffness

David Sheldon Schultz; Jeffrey C. Lotz; Shira M. Lee; Monique L. Trinidad; Jay M. Stewart

PURPOSE The intent of this study was to correlate measures of structurally relevant biochemical constituents with tensile mechanical behavior in porcine and human posterior sclera. METHODS Posterior scleral strips 6 x 25 mm were harvested from 13 young porcine and 10 aged human eyes and stored frozen at -20 degrees C. Mechanical hysteresis from 10 consecutive load cycles to a peak stress of 1.0 MPa was recorded via a custom-built soft tissue tester. In a parallel study, tissue adjacent to the mechanical test specimens was apportioned for each of five assays measuring: total collagen content, nonenzymatic cross-link density, elastin content, glycosaminoglycan content, and water content. RESULTS The average porcine scleral modulus at 1% strain was 75% less than that measured for human tissue (0.65 +/- 0.53 MPa versus 2.60 +/- 2.13 MPa, respectively; P < 0.05). However, the average strain energy absorbed per loading cycle was similar (6.09 +/- 2.54 kJ/m(3) vs. 5.96 +/- 2.69 kJ/m(3) for porcine and human sclera respectively; P > 0.05). Aged human sclera had relatively high fluorescence due to nonenzymatic cross-link density (2200 +/- 368 vs. 842 +/- 342; P < 0.05) and low hydroxyproline content (0.79 +/- 0.17 microL/mL/g versus 1.21 +/- 0.09 microL/mL/g; P < 0.05) while other measured biochemical factors were statistically similar (P > 0.05). CONCLUSIONS Aged human tissue had superior mechanical stiffness despite reduced collagen content, partially because of the accumulation of nonenzymatic cross-links. Differences in collagen content and cross-link density either had no effect or offsetting effects on the ability of the tissues to absorb strain energy.


Review of Scientific Instruments | 2009

The tissue diagnostic instrument

Paul K. Hansma; Hongmei Yu; David Sheldon Schultz; Azucena G. Rodriguez; Eugene Yurtsev; Jessica Orr; Simon Y. Tang; Jon D. Miller; Joseph M. Wallace; Frank W. Zok; Cheng Li; Richard B. Souza; Alexander Proctor; Davis Brimer; Xavier Nogues-Solan; Leonardo Mellbovsky; M. Jesus Peña; Oriol Diez-Ferrer; Phillip Mathews; Connor Randall; Alfred C. Kuo; Carol Chen; Mathilde C. Peters; David H. Kohn; Jenni M. Buckley; Xiaojuan Li; Lisa A. Pruitt; A Diez-Perez; Tamara Alliston; Valerie M. Weaver

Tissue mechanical properties reflect extracellular matrix composition and organization, and as such, their changes can be a signature of disease. Examples of such diseases include intervertebral disk degeneration, cancer, atherosclerosis, osteoarthritis, osteoporosis, and tooth decay. Here we introduce the tissue diagnostic instrument (TDI), a device designed to probe the mechanical properties of normal and diseased soft and hard tissues not only in the laboratory but also in patients. The TDI can distinguish between the nucleus and the annulus of spinal disks, between young and degenerated cartilage, and between normal and cancerous mammary glands. It can quantify the elastic modulus and hardness of the wet dentin left in a cavity after excavation. It can perform an indentation test of bone tissue, quantifying the indentation depth increase and other mechanical parameters. With local anesthesia and disposable, sterile, probe assemblies, there has been neither pain nor complications in tests on patients. We anticipate that this unique device will facilitate research on many tissue systems in living organisms, including plants, leading to new insights into disease mechanisms and methods for their early detection.


Investigative Ophthalmology & Visual Science | 2009

Collagen cross-links reduce corneal permeability.

Jay M. Stewart; David Sheldon Schultz; On-Tat Lee; Monique L. Trinidad

PURPOSE To investigate the relationship between corneal permeability and nonenzymatic cross-link density. METHODS Corneas were dissected from 90 cadaveric porcine eyes. Samples were incubated for 24 hours with control solution or methylglyoxal at concentrations of 0.01%, 0.10%, and 1.00%. Nonenzymatic cross-link density in treated and control groups was quantified by papain digest and fluorescence spectrophotometry. Control and treated corneas were mounted in a customized Ussing-type chamber connected to vertical tubing, and specific hydraulic conductivity was determined according to the descent of a column of degassed saline at room temperature. Permeability to diffusion of fluorescein in a static chamber was determined for a similar set of corneal samples. RESULTS Methylglyoxal treatment effectively increased nonenzymatic cross-link content, as indicated by the average fluorescence for each group. Specific hydraulic conductivity (m(2)) was reduced with increasing cross-link density. Similarly, the permeability coefficient for the fluorescein solute consistently decreased with increasing methylglyoxal concentration, indicating diffusion impedance resulting from the treatment. CONCLUSIONS Nonenzymatic cross-link density in the cornea can be significantly increased by treatment with methylglyoxal. Porcine cornea showed a nonlinear reduction in solute permeability and specific hydraulic conductivity with increasing cross-link density. This model suggests that age-related nonenzymatic cross-link accumulation can have a substantial impact on corneal permeability.


Investigative Ophthalmology & Visual Science | 2009

Exogenous collagen cross-linking reduces scleral permeability: modeling the effects of age-related cross-link accumulation.

Jay M. Stewart; David Sheldon Schultz; On-Tat Lee; Monique L. Trinidad

PURPOSE To investigate the relationship between scleral permeability and nonenzymatic cross-link density. METHODS Scleral discs 18 mm in diameter were dissected from the medial and lateral equatorial regions of 60 cadaveric porcine eyes. Samples were incubated for 24 hours with control solution or methylglyoxal at concentrations of 0.001%, 0.01%, 0.10%, and 1.00%. Nonenzymatic cross-link density in treated and control groups was quantified with the use of papain digest and fluorescence spectrophotometry. Treated scleral discs were mounted in a customized Ussing-type chamber connected to vertical tubing, and specific hydraulic conductivity was determined according to the descent of a column of degassed saline at room temperature. Permeability to diffusion of fluorescein in a static chamber was determined for another set of treated scleral samples. RESULTS Methylglyoxal treatment effectively increased nonenzymatic cross-link content, as indicated by the average fluorescence for each group. Specific hydraulic conductivity (m(2)) was reduced with increasing cross-link density. Similarly, the permeability coefficient for the fluorescein solute consistently decreased with increasing methylglyoxal concentration, indicating diffusion impedance from the treatment. CONCLUSIONS Nonenzymatic cross-link density can be significantly increased by treatment with methylglyoxal. Porcine sclera showed a nonlinear reduction in solute permeability and specific hydraulic conductivity with increasing cross-link density. This model indicates that age-related nonenzymatic cross-link accumulation can have a substantial impact on scleral permeability.


Investigative Ophthalmology & Visual Science | 2011

Cross-Linking with Ultraviolet-A and Riboflavin Reduces Corneal Permeability

Jay M. Stewart; On-Tat Lee; Fergus F. Wong; David Sheldon Schultz; Ricardo Lamy

PURPOSE To investigate the effect of cross-linking treatment on corneal permeability in a live animal model. METHODS Rabbit eyes were selected at random to be left unoperated or to undergo epithelial debridement with or without treatment consisting of cross-linking (CXL) with riboflavin and ultraviolet-A. Nine eyes received a total dose of 3.6 J/cm² and after epithelial healing the corneas were placed in a two-chamber system for quantification of the diffusion of fluorescein compared with controls. Thirty eyes received a total dose of 5.4 J/cm² and, after epithelial healing, in vivo corneal permeability was quantified as the pupillary response over a 30-minute period to a dose of topical pilocarpine compared with controls. RESULTS In the ex vivo assay, the mean permeability coefficient in the CXL group (2.42 × 10⁻⁷) was reduced when compared with the unoperated controls (3.73 × 10⁻⁷; P = 0.007) and to the eyes that received epithelial debridement alone (3.74 × 10⁻⁷; P = 0.01). In the in vivo permeability assay, the change in pupillary diameter at 30 minutes after pilocarpine administration was smaller in the CXL group (-1.9 mm), compared with the epithelial debridement group (-2.6 mm; P < 0.001) and with the unoperated controls (-2.7 mm; P = 0.003). CONCLUSIONS Corneal cross-linking with ultraviolet-A and riboflavin results in a statistically significant reduction in corneal permeability. These findings suggest that dosing of topical medications may need to be increased in eyes with a history of CXL to achieve expected therapeutic effects, and they may have implications for the long-term health of the cornea.


Journal of Biomechanics | 2009

Mechanical profiling of intervertebral discs

David Sheldon Schultz; Azucena G. Rodriguez; Paul K. Hansma; Jeffrey C. Lotz

Despite recent advances in imaging diagnostic technology and additional treatment options our ability to prevent or inhibit discogenic back pain has not drastically improved. The challenge of linking early degenerative patterns to dysfunction and pain remains. Using a novel material testing device designated the tissue diagnostic instrument (TDI) we measured the local stiffness and strain energy absorption in the radial direction of 13 intact intervertebral discs; effectively generating a mechanical profile of each disc. Prior to measuring mechanical properties, an MR image was taken of each spine segment and the discs were radiologically scored according to the Pfirrmann scale. After testing, a sagittal portion of each L1-L2 disc was excised from each of four spines for histology. No significant correlations were found between Pfirrmann grade and mechanical data. However, polarized light microscopy images of disc sections indicated correlations between local tissue modulus measured with the TDI and the clarity and density of lamellar striations.


Experimental Eye Research | 2012

Whole globe inflation testing of exogenously crosslinked sclera using genipin and methylglyoxal

Fergus F. Wong; David R. Lari; David Sheldon Schultz; Jay M. Stewart

Exogenous collagen cross-linking has been investigated as method of reinforcing scleral biomechanics, with the goal of counteracting scleral weakening that occurs at the onset of myopia. This study uses whole globe inflation testing to investigate the biomechanical effect of treating posterior sclera with the collagen cross-linking agents methylglyoxal and genipin. Pairs of porcine eyes were treated in four ways. Three groups involved 1% methylglyoxal: two-hour (Group I) or thirty-minute (Group II) incubation of the whole globe, and thirty-minute incubation of only the posterior sclera of the intact eye (Group III). Group IV consisted of a thirty-minute incubation of the posterior sclera in 1% genipin. Following treatment, each eye was subjected to inflation testing under physiological pressure levels (0-150 mmHg); four strain markers on the posterior pole were tracked, providing displacement measurements in two directions. Results were used to derive load versus deformation behavior and to calculate stiffness at 0.25% strain (toe stiffness) and at peak strain (peak stiffness). Toe stiffness of Group I was 4.8 and 1.3 times greater than controls (sagittal and transverse directions, respectively: 5.23 ± 0.39 vs. 0.90 ± 0.08 mHg, P < 0.001; and 3.41 ± 0.19 vs. 1.51 ± 0.22 mHg, P < 0.01; values in mean ± SE). Group II was 7.4 and 4.3 times stiffer than controls (sagittal and transverse directions, respectively: 5.26 ± 0.49 vs. 0.63 ± 0.10 mHg, P < 0.02; and 3.44 ± 0.44 vs. 0.65 ± 0.07 mHg, P < 0.003). Group III was 3.6 and 3.4 times stiffer than controls (sagittal and transverse directions, respectively: 5.21 ± 0.39 vs. 1.13 ± 0.31 mHg, P < 0.01; and 4.94 ± 1.48 vs. 1.13 ± 0.25, P < 0.01), while Group IV was 8.2 and 2.8 times stiffer than controls (sagittal and transverse: 12.36 ± 1.96 vs. 1.35 ± 0.14 mHg, P < 0.01; and 12.45 ± 1.34 vs. 3.27 ± 0.50 mHg, P < 0.05). In all groups, there was no significant difference in peak stiffness after scleral cross-linking (SXL). At low strain, the posterior sclera was stiffer in both measured directions following methylglyoxal and genipin treatments, however at peak strain the treated sclera was not stiffer. Additionally, the saturation level of scleral stiffening by methylglyoxal can be reached within thirty minutes of treatment.


High and Low Concentrator Systems for Solar Electric Applications VI | 2011

A CPV Thesis

David Sheldon Schultz; Shondip Ghosh; Christopher Stephen Grimmer; Hunter Mack

The viability of a concentrator technology is determined by five interrelated factors: economic benefit, cell performance under concentration, thermal management, optical performance and manufacturability. Considering these factors, the 5- 10x concentration range is ideal for silicon-based receivers because this level of concentration captures the bulk of available economic gains while mitigating technical risk. Significant gains in capital efficiency are forsaken below the 5x concentration level. Above the 10x level of concentration, marginal improvements to economic benefit are achieved, but threats to reliability emerge and tend to erode the available economic benefit. Furthermore, optic solutions that provide for concentration above 10x tend to force a departure from low-profile flat-plate designs that are most adoptable. For silicon based receivers, a 5-10x level of concentration within a traditional module form factor is optimal.


Archive | 2007

Solar energy concentrator

Shondip Ghosh; David Sheldon Schultz

Collaboration


Dive into the David Sheldon Schultz's collaboration.

Top Co-Authors

Avatar

Shondip Ghosh

University of California

View shared research outputs
Top Co-Authors

Avatar

Jay M. Stewart

University of California

View shared research outputs
Top Co-Authors

Avatar

On-Tat Lee

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David R. Lari

University of California

View shared research outputs
Top Co-Authors

Avatar

Fergus F. Wong

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge