Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David Stoddart is active.

Publication


Featured researches published by David Stoddart.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Single-nucleotide discrimination in immobilized DNA oligonucleotides with a biological nanopore

David Stoddart; Andrew J. Heron; Ellina Mikhailova; Giovanni Maglia; Hagan Bayley

The sequencing of individual DNA strands with nanopores is under investigation as a rapid, low-cost platform in which bases are identified in order as the DNA strand is transported through a pore under an electrical potential. Although the preparation of solid-state nanopores is improving, biological nanopores, such as α-hemolysin (αHL), are advantageous because they can be precisely manipulated by genetic modification. Here, we show that the transmembrane β-barrel of an engineered αHL pore contains 3 recognition sites that can be used to identify all 4 DNA bases in an immobilized single-stranded DNA molecule, whether they are located in an otherwise homopolymeric DNA strand or in a heteropolymeric strand. The additional steps required to enable nanopore DNA sequencing are outlined.


Chemical Communications | 2010

Identification of epigenetic DNA modifications with a protein nanopore.

Emma V. B. Wallace; David Stoddart; Andrew J. Heron; Ellina Mikhailova; Giovanni Maglia; Timothy J. Donohoe; Hagan Bayley

Two DNA bases, 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (hmC), marks of epigenetic modification, are recognized in immobilized DNA strands and distinguished from G, A, T and C by nanopore current recording. Therefore, if further aspects of nanopore sequencing can be addressed, the approach will provide a means to locate epigenetic modifications in unamplified genomic DNA.


Nano Letters | 2010

Nucleobase recognition in ssDNA at the central constriction of the alpha-hemolysin pore.

David Stoddart; Andrew J. Heron; Jochen W. Klingelhoefer; Ellina Mikhailova; Giovanni Maglia; Hagan Bayley

Nanopores are under investigation for single-molecule DNA sequencing. The alpha-hemolysin (alphaHL) protein nanopore contains three recognition points capable of nucleobase discrimination in individual immobilized ssDNA molecules. We have modified the recognition point R(1) by extensive mutagenesis of residue 113. Amino acids that provide an energy barrier to ion flow (e.g., bulky or hydrophobic residues) strengthen base identification, while amino acids that lower the barrier weaken it. Amino acids with related side chains produce similar patterns of nucleobase recognition providing a rationale for the redesign of recognition points.


Angewandte Chemie | 2010

Multiple Base‐Recognition Sites in a Biological Nanopore: Two Heads are Better than One

David Stoddart; Giovanni Maglia; Ellina Mikhailova; Andrew J. Heron; Hagan Bayley

Ultra-rapid sequencing of DNA strands with nanopores is under intense investigation. The αHL protein nanopore is a leading candidate sensor for this approach. Multiple base-recognition sites have been identified in engineered αHL pores. By using immobilized synthetic oligonucleotides, we show here that additional sequence information can be gained when two recognition sites, rather than one, are employed within a single nanopore.


Methods in Enzymology | 2010

Analysis of single nucleic acid molecules with protein nanopores

Giovanni Maglia; Andrew J. Heron; David Stoddart; Deanpen Japrung; Hagan Bayley

We describe the methods used in our laboratory for the analysis of single nucleic acid molecules with protein nanopores. The technical section is preceded by a review of the variety of experiments that can be done with protein nanopores. The end goal of much of this work is single-molecule DNA sequencing, although sequencing is not discussed explicitly here. The technical section covers the equipment required for nucleic acid analysis, the preparation and storage of the necessary materials, and aspects of signal processing and data analysis.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Functional truncated membrane pores

David Stoddart; Mariam Ayub; Lajos Höfler; Pinky Raychaudhuri; Jochen W. Klingelhoefer; Giovanni Maglia; Andrew J. Heron; Hagan Bayley

Significance Cells and compartments within them are bounded by membranes, the underlying structure of which is the lipid bilayer. Molecules that move into and out of cells or between compartments are transported through protein channels and pores, which according to conventional thinking completely span the intact bilayer. However, indirect evidence has suggested the existence of a separate class of membrane proteins that perturb the bilayer structure to create transmembrane conduits. We present direct evidence for such proteins, and suggest that they are protagonists in important physiological processes, including defense by the immune system against microorganisms and neuronal damage in Alzheimers disease. Membrane proteins are generally divided into two classes. Integral proteins span the lipid bilayer, and peripheral proteins are located at the membrane surface. Here, we provide evidence for membrane proteins of a third class that stabilize lipid pores, most probably as toroidal structures. We examined mutants of the staphylococcal α-hemolysin pore so severely truncated that the protein cannot span a bilayer. Nonetheless, the doughnut-like structures elicited well-defined transmembrane ionic currents by inducing pore formation in the underlying lipids. The formation of lipid pores, produced here by a structurally defined protein, is supported by the lipid and voltage dependences of pore formation, and by molecular dynamics simulations. We discuss the role of stabilized lipid pores in amyloid disease, the action of antimicrobial peptides, and the assembly of the membrane-attack complexes of the immune system.


Nanotechnology | 2015

DNA stretching and optimization of nucleobase recognition in enzymatic nanopore sequencing

David Stoddart; Lorenzo Franceschini; Andrew J. Heron; Hagan Bayley; Giovanni Maglia

In nanopore sequencing, where single DNA strands are electrophoretically translocated through a nanopore and the resulting ionic signal is used to identify the four DNA bases, an enzyme has been used to ratchet the nucleic acid stepwise through the pore at a controlled speed. In this work, we investigated the ability of alpha-hemolysin nanopores to distinguish the four DNA bases under conditions that are compatible with the activity of DNA-handling enzymes. Our findings suggest that in immobilized strands, the applied potential exerts a force on DNA (∼10 pN at +160 mV) that increases the distance between nucleobases by about 2.2 Å V(-1). The four nucleobases can be resolved over wide ranges of applied potentials (from +60 to +220 mV in 1 m KCl) and ionic strengths (from 200 mM KCl to 1 M KCl at +160 mV) and nucleobase recognition can be improved when the ionic strength on the side of the DNA-handling enzyme is low, while the ionic strength on the opposite side is high.


Structure | 2013

Structure of the Fibrillin-1 N-Terminal Domains Suggests that Heparan Sulfate Regulates the Early Stages of Microfibril Assembly

David Yadin; Ian B. Robertson; Joanne McNaught-Davis; Paul Evans; David Stoddart; Penny A. Handford; Sacha A. Jensen; Christina Redfield

Summary The human extracellular matrix glycoprotein fibrillin-1 is the primary component of the 10- to 12-nm-diameter microfibrils, which perform key structural and regulatory roles in connective tissues. Relatively little is known about the molecular mechanisms of fibrillin assembly into microfibrils. Studies using recombinant fibrillin fragments indicate that an interaction between the N- and C-terminal regions drives head-to-tail assembly. Here, we present the structure of a fibrillin N-terminal fragment comprising the fibrillin unique N-terminal (FUN) and the first three epidermal growth factor (EGF)-like domains (FUN-EGF3). Two rod-like domain pairs are separated by a short, flexible linker between the EGF1 and EGF2 domains. We also show that the binding site for the C-terminal region spans multiple domains and overlaps with a heparin interaction site. These data suggest that heparan sulfate may sequester fibrillin at the cell surface via FUN-EGF3 prior to aggregation of the C terminus, thereby regulating microfibril assembly.


ACS Nano | 2015

Nucleobase Recognition by Truncated α-Hemolysin Pores

Mariam Ayub; David Stoddart; Hagan Bayley

The α-hemolysin (αHL) protein nanopore has been investigated previously as a base detector for the strand sequencing of DNA and RNA. Recent findings have suggested that shorter pores might provide improved base discrimination. New work has also shown that truncated-barrel mutants (TBM) of αHL form functional pores in lipid bilayers. Therefore, we tested TBM pores for the ability to recognize bases in DNA strands immobilized within them. In the case of TBMΔ6, in which the barrel is shortened by ∼16 Å, one of the three recognition sites found in the wild-type pore, R1, was almost eliminated. With further mutagenesis (Met113 → Gly), R1 was completely removed, demonstrating that TBM pores can mediate sharpened recognition. Remarkably, a second mutant of TBMΔ6 (Met113 → Phe) was able to bind the positively charged β-cyclodextrin, am7βCD, unusually tightly, permitting the continuous recognition of individual nucleoside monophosphates, which would be required for exonuclease sequencing mediated by nanopore base identification.


New Biotechnology | 2016

New Technologies for DNA analysis-A review of the READNA Project

Steven McGinn; David L.V. Bauer; Thomas Brefort; Liqin Dong; Afaf H. El-Sagheer; Abdou ElSharawy; Geraint Evans; Elin Falk-Sörqvist; Michael Forster; Simon Fredriksson; Peter Freeman; Camilla Freitag; Joachim Fritzsche; Spencer J. Gibson; Mats Gullberg; Marta Gut; Simon Heath; Isabelle Heath-Brun; Andrew J. Heron; Johannes Hohlbein; Rongqin Ke; Owen Lancaster; Ludovic Le Reste; Giovanni Maglia; Rodolphe Marie; Florence Mauger; Florian Mertes; Marco Mignardi; Lotte N. Moens; Jelle Oostmeijer

The REvolutionary Approaches and Devices for Nucleic Acid analysis (READNA) project received funding from the European Commission for 41/2 years. The objectives of the project revolved around technological developments in nucleic acid analysis. The project partners have discovered, created and developed a huge body of insights into nucleic acid analysis, ranging from improvements and implementation of current technologies to the most promising sequencing technologies that constitute a 3(rd) and 4(th) generation of sequencing methods with nanopores and in situ sequencing, respectively.

Collaboration


Dive into the David Stoddart's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge