Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David T. Dexter is active.

Publication


Featured researches published by David T. Dexter.


Free Radical Research | 2005

Neuroprotective properties of the natural phenolic antioxidants curcumin and naringenin but not quercetin and fisetin in a 6-OHDA model of Parkinson's disease.

Virginia Zbarsky; Krishna P. Datla; Shabnam Parkar; Deepal Rai; Okezie I. Aruoma; David T. Dexter

Although the cause of dopaminergic cell death in Parkinsons disease (PD) remains unknown, oxidative stress has been strongly implicated. Because of their ability to combat oxidative stress, diet derived phenolic compounds continue to be considered as potential agents for long-term use in PD. This study was aimed at investigating whether the natural phenolic compounds curcumin, naringenin, quercetin, fisetin can be neuroprotective in the 6-OHDA model of PD. Unilateral infusion of 6-OHDA into the medial forebrain bundle produced a significant loss of tyrosine hydroxylase (TH)-positive cells in the substantia nigra (SN) as well as a decreased of dopamine (DA) content in the striata in the vehicle-treated animals. Rats pretreated with curcumin or naringenin showed a clear protection of the number of TH-positive cells in the SN and DA levels in the striata. However, neither pretreatment with quercetin nor fisetin had any effects on TH-positive cells or DA levels. The ability of curcumin and naringenin to exhibit neuroprotection in the 6-OHDA model of PD may be related to their antioxidant capabilities and their capability to penetrate into the brain.


Free Radical Biology and Medicine | 2013

Parkinson disease: from pathology to molecular disease mechanisms

David T. Dexter; Peter Jenner

Parkinson disease (PD) is a complex neurodegenerative disorder with both motor and nonmotor symptoms owing to a spreading process of neuronal loss in the brain. At present, only symptomatic treatment exists and nothing can be done to halt the degenerative process, as its cause remains unclear. Risk factors such as aging, genetic susceptibility, and environmental factors all play a role in the onset of the pathogenic process but how these interlink to cause neuronal loss is not known. There have been major advances in the understanding of mechanisms that contribute to nigral dopaminergic cell death, including mitochondrial dysfunction, oxidative stress, altered protein handling, and inflammation. However, it is not known if the same processes are responsible for neuronal loss in nondopaminergic brain regions. Many of the known mechanisms of cell death are mirrored in toxin-based models of PD, but neuronal loss is rapid and not progressive and limited to dopaminergic cells, and drugs that protect against toxin-induced cell death have not translated into neuroprotective therapies in humans. Gene mutations identified in rare familial forms of PD encode proteins whose functions overlap widely with the known molecular pathways in sporadic disease and these have again expanded our knowledge of the neurodegenerative process but again have so far failed to yield effective models of sporadic disease when translated into animals. We seem to be missing some key parts of the jigsaw, the trigger event starting many years earlier in the disease process, and what we are looking at now is merely part of a downstream process that is the end stage of neuronal death.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Transmission of multiple system atrophy prions to transgenic mice

Joel C. Watts; Kurt Giles; Abby Oehler; Lefkos Middleton; David T. Dexter; Steve M. Gentleman; Stephen J. DeArmond; Stanley B. Prusiner

Significance Multiple system atrophy (MSA) is a neurodegenerative disorder characterized by the accumulation of misfolded α-synuclein protein in glial cells within the brain. Transgenic mice expressing mutant α-synuclein that were inoculated with brain homogenate from MSA patients developed clinical, biochemical, and pathological signs of a neurodegenerative disease, indicating that MSA is transmissible under certain conditions. This transmissibility is reminiscent of the human prion disorders, such as Creutzfeldt–Jakob disease, and suggests that MSA is caused by the accumulation of toxic α-synuclein prions in the brain. Prions are proteins that adopt alternative conformations, which become self-propagating. Increasing evidence argues that prions feature in the synucleinopathies that include Parkinson’s disease, Lewy body dementia, and multiple system atrophy (MSA). Although TgM83+/+ mice homozygous for a mutant A53T α-synuclein transgene begin developing CNS dysfunction spontaneously at ∼10 mo of age, uninoculated TgM83+/− mice (hemizygous for the transgene) remain healthy. To determine whether MSA brains contain α-synuclein prions, we inoculated the TgM83+/− mice with brain homogenates from two pathologically confirmed MSA cases. Inoculated TgM83+/− mice developed progressive signs of neurologic disease with an incubation period of ∼100 d, whereas the same mice inoculated with brain homogenates from spontaneously ill TgM83+/+ mice developed neurologic dysfunction in ∼210 d. Brains of MSA-inoculated mice exhibited prominent astrocytic gliosis and microglial activation as well as widespread deposits of phosphorylated α-synuclein that were proteinase K sensitive, detergent insoluble, and formic acid extractable. Our results provide compelling evidence that α-synuclein aggregates formed in the brains of MSA patients are transmissible and, as such, are prions. The MSA prion represents a unique human pathogen that is lethal upon transmission to Tg mice and as such, is reminiscent of the prion causing kuru, which was transmitted to chimpanzees nearly 5 decades ago.


Journal of Neural Transmission | 2011

Brain iron metabolism and its perturbation in neurological diseases.

Robert R. Crichton; David T. Dexter; Roberta J. Ward

Metal ions are of particular importance in brain function, notably iron. A broad overview of iron metabolism and its homeostasis both at the cellular level (involving regulation at the level of mRNA translation) and the systemic level (involving the peptide ‘hormone’ hepcidin) is presented. The mechanisms of iron transport both across the blood–brain barrier and within the brain are then examined. The importance of iron in the developing foetus and in early life is underlined. We then review the growing corpus of evidence that many neurodegenerative diseases (NDs) are the consequence of dysregulation of brain iron homeostasis. This results in the production of reactive oxygen species, generating reactive aldehydes, which, together with further oxidative insults, causes oxidative modification of proteins, manifested by carbonyl formation. These misfolded and damaged proteins overwhelm the ubiquitin/proteasome system, accumulating the characteristic inclusion bodies found in many NDs. The involvement of iron in Alzheimer’s disease and Parkinson’s disease is then examined, with emphasis on recent data linking in particular interactions between iron homeostasis and key disease proteins. We conclude that there is overwhelming evidence for a direct involvement of iron in NDs.


Neurogenetics | 2006

Whole genome expression profiling of the medial and lateral substantia nigra in Parkinson’s disease

Linda B. Moran; Dawn Duke; Manuel Deprez; David T. Dexter; R. K. B. Pearce; Manuel B. Graeber

We have used brain tissue from clinically well-documented and neuropathologically confirmed cases of sporadic Parkinson’s disease to establish the transcriptomic expression profile of the medial and lateral substantia nigra. In addition, the superior frontal cortex was analyzed in a subset of the same cases. DNA oligonucleotide microarrays were employed, which provide whole human genome coverage. A total of 570 genes were found to be differentially regulated at a high level of significance. A large number of differentially regulated expressed sequence tags were also identified. Levels of mRNA sequences encoded by genes of key interest were validated by means of quantitative real-time polymerase chain reaction (PCR). Comparing three different normalization procedures, results based on the recently published GeneChip Robust Multi Array algorithm were found to be the most accurate predictor of real-time PCR results. Several new candidate genes which map to PARK loci are reported. In addition, the DNAJ family of chaperones is discussed in the context of Parkinson’s disease pathogenesis.


Neuroreport | 2001

Tissue distribution and neuroprotective effects of citrus flavonoid tangeretin in a rat model of Parkinson's disease.

Krishna P. Datla; Maria Christidou; William W. Widmer; Harcharan K. Rooprai; David T. Dexter

Neuroprotective effects of a natural antioxidant tangeretin, a citrus flavonoid, were elucidated in the 6-hydroxydopamine (6-OHDA) lesion rat model of Parkinsons disease (PD), after bioavailability studies. Following the chronic oral administration (10 mg/kg/day for 28 days), significant levels of tangeretin were detected in the hypothalamus, striatum and hippocampus (3.88, 2.36 and 2.00 ng/mg, respectively). The levels in the liver and plasma were 0.59 ng/mg and 0.11 ng/ml respectively. Unilateral infusion of the dopaminergic neurotoxin, 6-hydroxydopamine (6-OHDA; 8 μg), onto medial forebrain bundle significantly reduced the number of tyrosine hydroxylase positive (TH+) cells in the substantia nigra and decreased striatal dopamine content in the vehicle treated rats. Sub-chronic treatment of the rats with high doses of tangeretin (20 mg/kg/day for 4 days; p.o.) before 6-OHDA lesioning markedly reduced the loss of both TH+ cells and striatal dopamine content. These studies, for the first time, give evidence that tangeretin crosses the blood–brain barrier. The significant protection of striato-nigral integrity and functionality by tangeretin suggests its potential use as a neuroprotective agent.


Journal of Neurochemistry | 2009

Relationship between microglial activation and dopaminergic neuronal loss in the substantia nigra: a time course study in a 6‐hydroxydopamine model of Parkinson’s disease

Lilia Marinova-Mutafchieva; Mona Sadeghian; Lauren Broom; John B. Davis; Andrew D. Medhurst; David T. Dexter

Cellular interactions between activated microglia and degenerating neurons in in vivo models of Parkinson’s disease are not well defined. This time course study assesses the dynamics of morphological and immunophenotypic properties of activated microglia in a 6‐hydroxydopamine (6‐OHDA) model of Parkinson’s disease. Neurodegeneration in the substantia nigra pars compacta (SNc) was induced by unilateral injection of 6‐OHDA into the medial forebrain bundle. Activated microglia, identified using monoclonal antibodies: clone of antibody that detects major histocompatibility complex (MHC) class II antigens (OX6) for MHC class II, clone of antibody that detects cell surface antigen‐cluster of differentiation 11b – anti‐complement receptor 3, a marker for complement receptor 3 and CD 68 for phagocytic activity. Activation of microglia in the lesioned SNc was rapid with cells possessing amoeboid or ramified morphology appeared on day 1, whilst antibody clone that detects macrophage‐myeloid associated antigen immunoreactivity was observed at day 3 post‐lesion when there was no apparent loss of tyrosine hydroxylase (TH)+ve dopaminergic (DA) SNc neurons. Thereafter, OX6 and antibody clone that detects macrophage‐myeloid associated antigen activated microglia selectively adhered to degenerating axons, dendrites and apoptotic (caspase 3+ve) DA neurons in the SNc were observed at day 7. This was followed by progressive loss of TH+ve SNc neurons, with the peak of TH+ve cell loss (51%) being observed at day 9. This study suggests that activation of microglia precedes DA neuronal cell loss and neurons undergoing degeneration may be phagocytosed prematurely by phagocytic microglia.


Journal of Neuropathology and Experimental Neurology | 2010

Effects of Antemortem and Postmortem Variables on Human Brain mRNA Quality: A BrainNet Europe Study

Pascal F. Durrenberger; Shama Fernando; Samira N. Kashefi; Isidro Ferrer; Jean-Jacques Hauw; Danielle Seilhean; Colin Smith; Robert Walker; Safa Al-Sarraj; Claire Troakes; Miklós Palkovits; Magdalena Kasztner; Inge Huitinga; Thomas Arzberger; David T. Dexter; Hans A. Kretzschmar; Richard Reynolds

Well-characterized and preserved human brain tissue that is prepared and stored in brain banks is an essential resource for research in neurological diseases. This study examined the quality of human brain postmortem tissue from multiple laboratories within the BrainNet Europe brain bank network to identify all possible confounding variables and determine how they may affect RNA quality. Antemortem and postmortem information was retrospectively collected for a large cohort of samples. Total RNA was isolated from anatomically defined brain regions using a standardized procedure; RNA quality was assessed using an Agilent 2100 Bioanalyzer. No significant difference in RNA quality was observed in 6 different brain regions. RNA quality deteriorated with increasing numbers of antemortem events such as hospitalization, coma, respiratory illness, and the use of artificial ventilation; accumulation of such events was associated with elevated hypoxia-inducible factor 1&agr; mRNA expression. Brain pH was found to be a good indicator of RNA quality. There was no correlation of postmortem delay with cerebrospinal fluid pH or RNA quality overall, but some individual RNAs decreased in quality with antemortem events and with postmortem delay. RNA quality did not affect total RNA yield. Determining the factors that are best predictors of RNA quality can help brain banks with selection criteria for storing high-quality brain tissue for research.


Pharmacology & Therapeutics | 2013

Epigenetic targeting of histone deacetylase: therapeutic potential in Parkinson's disease?

Ian F. Harrison; David T. Dexter

Parkinsons disease (PD) is the most common movement disorder affecting more than 4million people worldwide. The primary motor symptoms of the disease are due to degeneration of dopaminergic nigrostriatal neurons. Dopamine replacement therapies have therefore revolutionised disease management by partially controlling these symptoms. However these drugs can produce debilitating side effects when used long term and do not protect degenerating neurons against death. Recent evidence has highlighted a pathological imbalance in PD between the acetylation and deacetylation of the histone proteins around which deoxyribonucleic acid (DNA) is coiled, in favour of excessive histone deacetylation. This mechanism of adding/removing acetyl groups to histone lysine residues is one of many epigenetic regulatory processes which control the expression of genes, many of which will be essential for neuronal survival. Hence, such epigenetic modifications may have a pathogenic role in PD. It has therefore been hypothesised that if this pathological imbalance can be corrected with the use of histone deacetylase inhibiting agents then neurodegeneration observed in PD can be ameliorated. This article will review the current literature with regard to epigenetic changes in PD and the use of histone deacetylase inhibitors (HDACIs) in PD: examining the evidence of the neuroprotective effects of numerous HDACIs in cellular and animal models of Parkinsonian cell death. Ultimately answering the question: does epigenetic targeting of histone deacetylases hold therapeutic potential in PD?


Journal of Neurochemistry | 2009

Neuro-inflammation induced in the hippocampus of 'binge drinking' rats may be mediated by elevated extracellular glutamate content

Roberta J. Ward; Maria Alessandra Colivicchi; Rachel Allen; François Schol; Frédéric Lallemand; Philippe De Witte; Chiara Ballini; Laura Della Corte; David T. Dexter

The neuropathological and immune changes induced in the brain by ‘binge drinking’ have been investigated in a rat model. Evidence of neuro‐inflammation was identified in the ‘binge drinking’ rat model of alcohol abuse after 3 weeks of administration of 2 or 3 g/kg ethanol (EtOH), three times per day for two consecutive days, followed by 5 days of abstinence: Firstly, alveolar macrophages, isolated from these animals, showed significant increases in inducible nitric oxide synthase, as assayed by nitrite release, both before and after lipopolysaccaharide stimulation. Secondly, significant numbers of activated microglia were present in the dentate gyrus region of the hippocampus of the ‘binge drinking’ model, after major histocompatibility complex class II staining, by comparison with the control. Microdialysis studies in the ventral hippocampus identified a significant increase in the basal extracellular concentration of glutamate, in both the 2 and 3 g/kg administered ‘binge drinking’ rats. In contrast, no changes in the hippocampal extracellular concentrations, of GABA and taurine, or the dopamine and serotonin metabolites were observed under basal conditions. A further dose of EtOH induced a significant decrease in the concentrations of both 3,4‐dihydroxyphenylacetic acid and 5‐hydroxyindoleacetic acid, whereas glutamate, taurine and GABA levels were unaffected. There was no evidence that EtOH preference was initiated by the ‘binge drinking’ regimen. Our results suggest that the possible toxicity associated with ‘binge drinking’ maybe directed by the elevated glutamate levels, which in turn, activate phagocytic cells to release their inflammatory cytokines and chemokines, ultimately leading to neuro‐inflammation.

Collaboration


Dive into the David T. Dexter's collaboration.

Top Co-Authors

Avatar

Roberta J. Ward

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Robert R. Crichton

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian F. Harrison

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frédéric Lallemand

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge