Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David T. Kurjiaka is active.

Publication


Featured researches published by David T. Kurjiaka.


American Journal of Physiology-cell Physiology | 1998

Gap junction permeability is diminished in proliferating vascular smooth muscle cells

David T. Kurjiaka; Timothy D. Steele; Mary V. Olsen; Janis M. Burt

In atherosclerosis and hypertension, vascular smooth muscle cells (SMCs) are stimulated to proliferate and exhibit enhanced gap junction protein expression. Our goal was to determine whether gap junction function differs in proliferating vs. growth-arrested SMCs. A7r5 cells (embryonic rat aortic SMCs) did not proliferate in media with reduced serum (∼90% of cells in G0/G1phase after 48-96 h in 1% fetal bovine serum). Dye coupling was less but electrical coupling was comparable in proliferating vs. growth-arrested A7r5 cells, suggesting differences in junctional permselectivity. In growth-arrested cells, junctional conductances measured with potassium glutamate, tetraethylammonium chloride, and KCl were well predicted by the conductivities of these solutions. In contrast, junctional conductances measured with potassium glutamate and tetraethylammonium chloride in proliferating cells were significantly greater than predicted by the conductivities of these solutions. These results suggest that junctions between growth-arrested cells are permeated equally well and simultaneously by anions and cations, whereas junctions between proliferating cells are poorly permeated by large molecules of either charge and equally well but not simultaneously by small anions and cations. The data indicate that A7r5 cells regulate chemical coupling independent of electrical coupling, a capacity that could facilitate growth control while protecting vasomotor responsiveness of vessels.


Circulation Research | 2014

CaV3.2 Channels and the Induction of Negative Feedback in Cerebral Arteries

Osama F. Harraz; Rasha Abd El-Rahman; Kamran Bigdely-Shamloo; Sean M. Wilson; Suzanne E. Brett; Monica Romero; Albert L. Gonzales; Scott Earley; Edward J. Vigmond; Anders Nygren; Bijoy K. Menon; Rania E. Mufti; Timothy Watson; Yves Starreveld; Tobias Fürstenhaupt; Philip R. Muellerleile; David T. Kurjiaka; Barry D. Kyle; Andrew P. Braun; Donald G. Welsh

Rationale: T-type (CaV3.1/CaV3.2) Ca2+ channels are expressed in rat cerebral arterial smooth muscle. Although present, their functional significance remains uncertain with findings pointing to a variety of roles. Objective: This study tested whether CaV3.2 channels mediate a negative feedback response by triggering Ca2+ sparks, discrete events that initiate arterial hyperpolarization by activating large-conductance Ca2+-activated K+ channels. Methods and Results: Micromolar Ni2+, an agent that selectively blocks CaV3.2 but not CaV1.2/CaV3.1, was first shown to depolarize/constrict pressurized rat cerebral arteries; no effect was observed in CaV3.2−/− arteries. Structural analysis using 3-dimensional tomography, immunolabeling, and a proximity ligation assay next revealed the existence of microdomains in cerebral arterial smooth muscle which comprised sarcoplasmic reticulum and caveolae. Within these discrete structures, CaV3.2 and ryanodine receptor resided in close apposition to one another. Computational modeling revealed that Ca2+ influx through CaV3.2 could repetitively activate ryanodine receptor, inducing discrete Ca2+-induced Ca2+ release events in a voltage-dependent manner. In keeping with theoretical observations, rapid Ca2+ imaging and perforated patch clamp electrophysiology demonstrated that Ni2+ suppressed Ca2+ sparks and consequently spontaneous transient outward K+ currents, large-conductance Ca2+-activated K+ channel mediated events. Additional functional work on pressurized arteries noted that paxilline, a large-conductance Ca2+-activated K+ channel inhibitor, elicited arterial constriction equivalent, and not additive, to Ni2+. Key experiments on human cerebral arteries indicate that CaV3.2 is present and drives a comparable response to moderate constriction. Conclusions: These findings indicate for the first time that CaV3.2 channels localize to discrete microdomains and drive ryanodine receptor–mediated Ca2+ sparks, enabling large-conductance Ca2+-activated K+ channel activation, hyperpolarization, and attenuation of cerebral arterial constriction.


American Journal of Physiology-heart and Circulatory Physiology | 2009

Regulation of gap junctional charge selectivity in cells coexpressing connexin 40 and connexin 43

Nathanael S. Heyman; David T. Kurjiaka; Jose F. Ek Vitorin; Janis M. Burt

Expression of connexin 40 (Cx40) and Cx43 in cardiovascular tissues varies as a function of age, injury, and development with unknown consequences on the selectivity of junctional communication and its acute regulation. We investigated the PKC-dependent regulation of charge selectivity in junctions composed of Cx43, Cx40, or both by simultaneous assessment of junctional permeance rate constants (B(dye)) for dyes of similar size but opposite charge, N,N,N-trimethyl-2-[methyl-(7-nitro-2,1,3-benzoxadiol-4-yl)amino]ethanaminium (NBD-M-TMA; +1) and Alexa 350 (-1). The ratio of dye rate constants (B(NBD-M-TMA)/B(Alexa 350)) indicated that Cx40 junctions are cation selective (10.7 +/- 0.5), whereas Cx43 junction are nonselective (1.22 +/- 0.14). In coexpressing cells, a broad range of junctional selectivities was observed with mean cation selectivity increasing as the Cx40 to Cx43 expression ratio increased. PKC activation reduced or eliminated dye permeability of Cx43 junctions without altering their charge selectivity, had no effect on either permeability or charge selectivity of Cx40 junctions, and significantly increased the cation selectivity of junctions formed by coexpressing cells (approaching charge selectivity of Cx40 junctions). Junctions composed of Cx43 truncated at residue 257 (Cx43tr) were also not charge selective, but when Cx43tr was coexpressed with Cx40, a broad range of junctional selectivities that was unaffected by PKC activation was observed. Thus, whereas the charge selectivities of homomeric/homotypic Cx43 and Cx40 junctions appear invariant, the selectivities of junctions formed by cells coexpressing Cx40 and Cx43 vary considerably, reflecting both their relative expression levels and phosphorylation-dependent regulation. Such regulation could represent a mechanism by which coexpressing cells such as vascular endothelium and atrial cells regulate acutely the selective intercellular communication mediated by their gap junctions.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2013

Connexin45 Regulates Endothelial-Induced Mesenchymal Cell Differentiation Toward a Mural Cell Phenotype

Jennifer S. Fang; Cuiping Dai; David T. Kurjiaka; Janis M. Burt; Karen K. Hirschi

Objective—The focus of this study was to investigate the role of connexin (Cx) 45 in endothelial-induced mural cell differentiation. Methods and Results—We created mural cell precursors that stably express only Cx45 in Cx43-deficient mesenchymal cells (ReCx45), and used our in vitro model of blood vessel assembly to assess the capacity of this Cx to support endothelial-induced mural cell differentiation. Lucifer Yellow dye injection and dual whole-cell patch clamping revealed that functional gap junctions exhibiting properties of Cx45-containing channels formed among ReCx45 transfectants, and between ReCx45 and endothelial cells. Heterocellular Cx45-containing gap junction channels enabled transforming growth factor-&bgr; activation and promoted the upregulation of mural cell–specific proteins in the mesenchymal precursors. Conclusion—These studies reveal a critical role for Cx45 in the regulation of endothelial-induced mural cell differentiation, which is consistent with the phenotype of Cx45-deficient embryos that exhibit dysregulated transforming growth factor-&bgr; and lack mural cell development.


Frontiers in Physiology | 2011

Chronic hindlimb ischemia impairs functional vasodilation and vascular reactivity in mouse feed arteries.

Trevor R. Cardinal; Kyle R. Struthers; Thomas J. Kesler; Matthew D. Yocum; David T. Kurjiaka; James B. Hoying

Vasodilation of lower leg arterioles is impaired in animal models of chronic peripheral ischemia. In addition to arterioles, feed arteries are a critical component of the vascular resistance network, accounting for as much as 50% of the pressure drop across the arterial circulation. Despite the critical importance of feed arteries in blood flow control, the impact of ischemia on feed artery vascular reactivity is unknown. At 14 days following unilateral resection of the femoral–saphenous artery–vein pair, functional vasodilation of the profunda femoris artery was severely impaired, 11 ± 9 versus 152 ± 22%. Although endothelial and smooth muscle-dependent vasodilation were both impaired in ischemic arteries compared to control arteries (Ach: 40 ± 14 versus 81 ± 11%, SNP: 43 ± 12 versus and 85 ± 11%), the responses to acetylcholine and sodium nitroprusside were similar, implicating impaired smooth muscle-dependent vasodilation. Conversely, vasoconstriction responses to norepinephrine were not different between ischemic and control arteries, −68 ± 3 versus −66 ± 3%, indicating that smooth muscle cells were functional following the ischemic insult. Finally, maximal dilation responses to acetylcholine, ex vivo, were significantly impaired in the ischemic artery compared to control, 71 ± 9 versus 97 ± 2%, despite a similar generation of myogenic tone to the same intravascular pressure (80 mmHg). These data indicate that ischemia impairs feed artery vasodilation by impairing the responsiveness of the vascular wall to vasodilating stimuli. Future studies to examine the mechanistic basis for the impact of ischemia on vascular reactivity or treatment strategies to improve vascular reactivity following ischemia could provide the foundation for an alternative therapeutic paradigm for peripheral arterial occlusive disease.


Frontiers in Physiology | 2014

Emerging trend in second messenger communication and myoendothelial feedback

Cam Ha T. Tran; David T. Kurjiaka; Donald G. Welsh

Over the past decade, second messenger communication has emerged as one of the intriguing topics in the field of vasomotor control. Of particular interest has been the idea of second messenger flux from smooth muscle to endothelium initiating a feedback response that attenuates constriction. Mechanistic details of the precise signaling cascade have until recently remained elusive. In this perspective, we introduce readers to how myoendothelial gap junctions could enable sufficient inositol trisphosphate flux to initiate endothelial Ca2+ events that activate Ca2+ sensitive K+ channels. The resulting hyperpolarizing current would in turn spread back through the same myoendothelial gap junctions to moderate smooth muscle depolarization and constriction. In discussing this defined feedback mechanism, this brief manuscript will stress the importance of microdomains and of discrete cellular signaling.


American Journal of Physiology-heart and Circulatory Physiology | 2005

Hypertension attenuates cell-to-cell communication in hamster retractor muscle feed arteries

David T. Kurjiaka; Shawn B. Bender; Darin D. Nye; William B. Wiehler; Donald G. Welsh


American Journal of Physiology-cell Physiology | 2001

Alteration of Cx43:Cx40 expression ratio in A7r5 cells

Janis M. Burt; Anna M. Fletcher; Timothy D. Steele; Yan Wu; G. Trevor Cottrell; David T. Kurjiaka


Scandinavian Journal of Laboratory Animal Science | 2010

Impact of Cage Size and Enrichment (Tube and Shelf) on Heart Rate Variability in Rats

Anna E Brauner; David T. Kurjiaka; Angela Ibragimov; Ann L. Baldwin


The FASEB Journal | 2014

Impact of fatty acids on endothelial cell Cx43 expression (LB653)

Noah Zucker; David T. Kurjiaka

Collaboration


Dive into the David T. Kurjiaka's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Donald G. Welsh

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cuiping Dai

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge