Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David T. Sandwell is active.

Publication


Featured researches published by David T. Sandwell.


Journal of Geophysical Research | 1997

Marine gravity anomaly from Geosat and ERS 1 satellite altimetry

David T. Sandwell; Walter H. F. Smith

Closely spaced satellite altimeter profiles collected during the Geosat Geodetic Mission (-6 km) and the ERS 1 Geodetic Phase (8 km) are easily converted to grids of vertical gravity gradient and gravity anomaly. The long-wavelength radial orbit error is suppressed below the noise level of the altimeter by taking the along-track derivative of each profile. Ascending and descending slope profiles are then interpolated onto separate uniform grids. These four grids are combined to form comparable grids of east and north vertical deflection using an iteration scheme that interpolates data gaps with minimum curvature. The vertical gravity gradient is calculated directly from the derivatives of the vertical deflection grids, while Fourier analysis is required to construct gravity anomalies from the two vertical deflection grids. These techniques are applied to a combination of high-density data from the dense mapping phases of Geosat and ERS 1 along with lower-density but higher-accuracy profiles from their repeat orbit phases. A comparison with shipboard gravity data shows the accuracy of the satellite- derived gravity anomaly is about 4-7 mGal for random ship tracks. The accuracy improves to 3 mGal when the ship track follows a Geosat Exact Repeat Mission track line. These data provide the first view of the ocean floor structures in many remote areas of the Earth. Some applications include inertial navigation, prediction of seafloor depth, planning shipboard surveys, plate tectonics, isostasy of volcanoes and spreading ridges, and petroleum exploration.


Marine Geodesy | 2009

Global Bathymetry and Elevation Data at 30 Arc Seconds Resolution: SRTM30_PLUS

J. J. Becker; David T. Sandwell; Walter H. F. Smith; J. Braud; B. Binder; J. Depner; D. Fabre; J. Factor; S. Ingalls; S-H. Kim; R. Ladner; K. Marks; S. Nelson; A. Pharaoh; R. Trimmer; J. Von Rosenberg; G. Wallace; P. Weatherall

A new 30-arc second resolution global topography/bathymetry grid (SRTM30_PLUS) has been developed from a wide variety of data sources. Land and ice topography comes from the SRTM30 and ICESat topography, respectively. Ocean bathymetry is based on a new satellite-gravity model where the gravity-to-topography ratio is calibrated using 298 million edited soundings. The main contribution of this study is the compilation and editing of the raw soundings, which come from NOAA, individual scientists, SIO, NGA, JAMSTEC, IFREMER, GEBCO, and NAVOCEANO. The gridded bathymetry is available for ftp download in the same format as the 33 tiles of SRTM30 topography. There are 33 matching tiles of source identification number to convey the provenance of every grid cell. The raw sounding data, converted to a simple common format, are also available for ftp download.


Journal of Geophysical Research | 2009

Global marine gravity from retracked Geosat and ERS‐1 altimetry: Ridge segmentation versus spreading rate

David T. Sandwell; Walter H. F. Smith

[1] Three approaches are used to reduce the error in the satellite-derived marine gravity anomalies. First, we have retracked the raw waveforms from the ERS-1 and Geosat/GM missions resulting in improvements in range precision of 40% and 27%, respectively. Second, we have used the recently published EGM2008 global gravity model as a reference field to provide a seamless gravity transition from land to ocean. Third, we have used a biharmonic spline interpolation method to construct residual vertical deflection grids. Comparisons between shipboard gravity and the global gravity grid show errors ranging from 2.0 mGal in the Gulf of Mexico to 4.0 mGal in areas with rugged seafloor topography. The largest errors of up to 20 mGal occur on the crests of narrow large seamounts. The global spreading ridges are well resolved and show variations in ridge axis morphology and segmentation with spreading rate. For rates less than about 60 mm/a the typical ridge segment is 50–80 km long while it increases dramatically at higher rates (100–1000 km). This transition spreading rate of 60 mm/a also marks the transition from axial valley to axial high. We speculate that a single mechanism controls both transitions; candidates include both lithospheric and asthenospheric processes.


Science | 2014

New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure

David T. Sandwell; R. Dietmar Müller; Walter H. F. Smith; Emmanuel Soliman Garcia; Richard Francis

High-resolution tectonic solutions Detailed topographic maps are available for only a small fraction of the ocean floor, severely limited by the number of ship crossings. Global maps constructed using satellite-derived gravity data, in contrast, are limited in the size of features they can resolve. Sandwell et al. present a new marine gravity model that greatly improves this resolution (see the Perspective by Hwang and Chang). They identify several previously unknown tectonic features, including extinct spreading ridges in the Gulf of Mexico and numerous uncharted seamounts. Science, this issue p. 65; see also p. 32 A high-resolution marine gravity model shows buried tectonic features and ocean-floor topography. [Also see Perspective by Hwang and Chang] Gravity models are powerful tools for mapping tectonic structures, especially in the deep ocean basins where the topography remains unmapped by ships or is buried by thick sediment. We combined new radar altimeter measurements from satellites CryoSat-2 and Jason-1 with existing data to construct a global marine gravity model that is two times more accurate than previous models. We found an extinct spreading ridge in the Gulf of Mexico, a major propagating rift in the South Atlantic Ocean, abyssal hill fabric on slow-spreading ridges, and thousands of previously uncharted seamounts. These discoveries allow us to understand regional tectonic processes and highlight the importance of satellite-derived gravity models as one of the primary tools for the investigation of remote ocean basins.


Journal of Geophysical Research | 1994

Bathymetric prediction from dense satellite altimetry and sparse shipboard bathymetry

Walter H. F. Smith; David T. Sandwell

The southern oceans (south of 30°S) are densely covered with satellite-derived gravity data (track spacing 2–4 km) and sparsely covered with shipboard depth soundings (hundreds of kilometers between tracks in some areas). Flexural isostatic compensation theory suggests that bathymetry and downward continued gravity data may show linear correlation in a band of wave-lengths 15–160 km, if sediment cover is thin and seafloor relief is moderate. At shorter wave-lengths, the gravity field is insensitive to seafloor topography because of upward continuation from the seafloor to the sea surface; at longer wavelengths, isostatic compensation cancels out most of the gravity field due to the seafloor topography. We combine this theory with Wiener optimization theory and empirical evidence for gravity noise-to-signal ratios to design low-pass and band-pass filters to use in predicting bathymetry from gravity. The prediction combines long wavelengths (>160 km) from low-pass-filtered soundings with an intermediate-wavelength solution obtained from multiplying downward continued, band-pass-filtered (15–160 km) gravity data by a scaling factor S. S is empirically determined from the correlation between gravity data and existing soundings in the 15–160 km band by robust regression and varies at long wave-lengths. We find that areas with less than 200 m of sediment cover show correlation between gravity and bathymetry significant at the 99% level, and S may be related to the density of seafloor materials in these areas. The prediction has a horizontal resolution limit of 5–10 km in position and is within 100 m of actual soundings at 50% of grid points and within 240 m at 80% of these. In areas of very rugged topography the prediction underestimates the peak amplitudes of seafloor features. Images of the prediction reveal many tectonic features not seen on any existing bathymetrie charts. Because the prediction relies on the gravity field at wavelengths <160 km, it is insensitive to errors in the navigation of sounding lines but also cannot completely reproduce them. Therefore it may be used to locate tectonic features but should not be used to assess hazards to navigation. The prediction is available from the National Geophysical Data Center in both digital and printed form.


Nature | 2005

Three-dimensional deformation caused by the Bam, Iran, earthquake and the origin of shallow slip deficit

Yuri Fialko; David T. Sandwell; Mark Simons; Paul A. Rosen

Our understanding of the earthquake process requires detailed insights into how the tectonic stresses are accumulated and released on seismogenic faults. We derive the full vector displacement field due to the Bam, Iran, earthquake of moment magnitude 6.5 using radar data from the Envisat satellite of the European Space Agency. Analysis of surface deformation indicates that most of the seismic moment release along the 20-km-long strike-slip rupture occurred at a shallow depth of 4–5 km, yet the rupture did not break the surface. The Bam event may therefore represent an end-member case of the ‘shallow slip deficit’ model, which postulates that coseismic slip in the uppermost crust is systematically less than that at seismogenic depths (4–10 km). The InSAR-derived surface displacement data from the Bam and other large shallow earthquakes suggest that the uppermost section of the seismogenic crust around young and developing faults may undergo a distributed failure in the interseismic period, thereby accumulating little elastic strain.


Journal of Geophysical Research | 1995

Evidence for diffuse extension of the Pacific Plate from Pukapuka ridges and cross‐grain gravity lineations

David T. Sandwell; Edward L. Winterer; Jacqueline Mammerickx; Robert A. Duncan; Mary Ann Lynch; Daniel A. Levitt; C. L. Johnson

Satellite altimeter measurements of marine gravity reveal 100 to 200-km wavelength lineations over a wide area of the Pacific plate oriented roughly in the direction of absolute plate motion. At least three mechanisms have been proposed for their origin: small-scale convective rolls aligned in the direction of absolute plate motion by shear in the asthenosphere; diffuse N-S extension of the lithosphere resulting in lineated zones of extension (boudins); and minihotspots that move slowly with respect to major hotspots and produce intermittent volcanism. Recently, several chains of linear volcanic ridges have been found to be associated with the gravity lineations. Following ridgelike gravity signatures apparent in high-resolution Geosat gravity measurements, we surveyed a series of volcanic ridges that extend northwest from the East Pacific Rise flank for 2600 km onto 40 Ma seafloor. Our survey data, as well as radiometric dates on samples we collected from the ridges, provide tight constraints on their origin: (1) Individual ridge segments and sets of ridges are highly elongate in the direction of present absolute plate motion. (2) The ridges formed along a band 50 to 70-km-wide in the trough of one of the more prominent gravity lineations. (3) Radiometric dates of the largest ridges show no hotspot age progression. Moreover, the directions predicted for minihotspot traces older than 24 Ma do not match observed directions of either the gravity lineations or the ridges. Based on this last observation, we reject the minihotspot model. The occurrence of the ridges in the trough of the gravity lineation is incompatible with the small-scale convection model which would predict increased volcanism above the convective upwelling. We favor the diffuse extension model because it is consistent with the occurrence of ridges in the trough above the more highly extended lithosphere. However, the multibeam data show no evidence for widespread normal faulting of the crust as predicted by the model. Perhaps the fault scarps are buried under more than 30 m of sediments and/or covered by the elongated ridges. Finally, we note that if ridge-push force is much smaller than trench-pull force, then near the ridge axis the direction of maximum tensile stress must be perpendicular to the direction of absolute plate motion.


Geophysical Research Letters | 2015

Line of Sight Displacement from ALOS-2 Interferometry: Mw 7.8 Gorkha Earthquake and Mw 7.3 Aftershock

Eric O. Lindsey; Ryo Natsuaki; Xiaohua Xu; Masanobu Shimada; Manabu Hashimoto; Diego Melgar; David T. Sandwell

Interferometric synthetic aperture radar (InSAR) is a key tool for the analysis of displacement and stress changes caused by large crustal earthquakes, particularly in remote areas. A challenge for traditional InSAR has been its limited spatial and temporal coverage especially for very large events, whose dimensions exceed the typical swath width of 70–100 km. This problem is addressed by the ALOS-2 satellite, whose PALSAR-2 instrument operates in ScanSAR mode, enabling a repeat time of 2 weeks and a swath width of 350 km. Here we present InSAR line-of-sight displacement data from ALOS-2/PALSAR-2 observations covering the Mw 7.8 Gorkha, Nepal earthquake and its Mw 7.3 aftershock that were acquired within 1 week of each event. The data are made freely available and we encourage their use in models of the fault slip and associated stress changes. The Mw 7.3 aftershock not only extended the rupture area of the main shock toward the east but also left a 20 km gap where the fault has little or no coseismic slip. We estimate this unslipped fault patch has the potential to generate a Mw 6.9 event.


Journal of Geophysical Research | 1998

Phase gradient approach to stacking interferograms

David T. Sandwell; Evelyn J. Price

The phase gradient approach is used to construct averages and differences of interferograms without phase unwrapping. Our objectives for change detection are to increase fringe clarity and decrease errors due to tropospheric and ionospheric delay by averaging many interferograms. The standard approach requires phase unwrapping, scaling the phase according to the ratio of the perpendicular baseline, and finally forming the average or difference; however, unique phase unwrapping is usually not possible. Since the phase gradient due to topography is proportional to the perpendicular baseline, phase unwrapping is unnecessary prior to averaging or differencing. Phase unwrapping may be needed to interpret the results, but it is delayed until all of the largest topographic signals are removed. We demonstrate the method by averaging and differencing six interferograms having a suite of perpendicular baselines ranging from 18 to 406 m. Cross-spectral analysis of the difference between two Tandem interferograms provides estimates of spatial resolution, which are used to design prestack filters. A wide range of perpendicular baselines provides the best topographic recovery in terms of accuracy and coverage. Outside of mountainous areas the topography has a relative accuracy of better than 2 m. Residual interferograms (single interferogram minus stack) have tilts across the unwrapped phase that are typically 50 mm in both range and azimuth, reflecting both orbit error and atmospheric delay. Smaller-scale waves with amplitudes of 15 mm are interpreted as atmospheric lee waves. A few Global Positioning System (GPS) control points within a frame could increase the precision to -20 mm for a single interferogram; further improvements may be achieved by stacking residual interferograms.


IEEE Transactions on Geoscience and Remote Sensing | 2008

Accuracy and Resolution of ALOS Interferometry: Vector Deformation Maps of the Father's Day Intrusion at Kilauea

David T. Sandwell; David Myer; Robert J. Mellors; Masanobu Shimada; Benjamin A. Brooks; James Foster

We assess the spatial resolution and phase noise of interferograms made from L-band Advanced Land Observing Satellite (ALOS) synthetic-aperture-radar (SAR) data and compare these results with corresponding C-band measurements from European Space Agency Remote Sensing Satellite (ERS). Based on cross-spectral analysis of phase gradients, we find that the spatial resolution of ALOS interferograms is 1.3times better than ERS interferograms. The phase noise of ALOS (i.e., line-of-sight precision in the 100-5000-m wavelength band) is 1.6times worse than ERS (3.3 mm versus 2.1 mm). In both cases, the largest source of error is tropospheric phase delay. Vector deformation maps associated with the June 17, 2007 (Fathers day) intrusion along the east rift zone of the Kilauea Volcano were recovered using just four ALOS SAR images from two look directions. Comparisons with deformation vectors from 19 continuous GPS sites show rms line-of-site precision of 14 mm and rms azimuth precision (flight direction) of 71 mm. This azimuth precision is at least 4times better than the corresponding measurements made at C-band. Phase coherence is high even in heavily vegetated areas in agreement with previous results. This improved coherence combined with similar or better accuracy and resolution suggests that L-band ALOS will outperform C-band ERS in the recovery of slow crustal deformation.

Collaboration


Dive into the David T. Sandwell's collaboration.

Top Co-Authors

Avatar

Walter H. F. Smith

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Yuri Fialko

University of California

View shared research outputs
Top Co-Authors

Avatar

Xiaopeng Tong

University of California

View shared research outputs
Top Co-Authors

Avatar

Bridget Smith-Konter

Scripps Institution of Oceanography

View shared research outputs
Top Co-Authors

Avatar

Karen Luttrell

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar

Benjamin A. Brooks

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Yehuda Bock

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge