Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David T. Wu is active.

Publication


Featured researches published by David T. Wu.


Science | 2009

Microsecond Simulations of Spontaneous Methane Hydrate Nucleation and Growth

Matthew R. Walsh; Carolyn A. Koh; E. Dendy Sloan; Amadeu K. Sum; David T. Wu

Methanes Path to Captivity The mutual repulsion of oil and water is well known. It is thus somewhat baffling that in arctic regions and in marine sediments, enormous quantities of methane lie trapped under pressure in surrounding cages of ice. Walsh et al. (p. 1095, published online 8 October; see the Perspective by Debenedetti and Sarupria) undertook extended simulations to probe the steps that guide these two normally incompatible molecules along convergent, rather than divergent, paths. Computed 2- and 5-microsecond trajectories trace the process of methane capture as ice crystals nucleate and ultimately assemble into a cage network. An extended simulation uncovers the intricate steps whereby methane can be trapped in ice. Despite the industrial implications and worldwide abundance of gas hydrates, the formation mechanism of these compounds remains poorly understood. We report direct molecular dynamics simulations of the spontaneous nucleation and growth of methane hydrate. The multiple-microsecond trajectories offer detailed insight into the process of hydrate nucleation. Cooperative organization is observed to lead to methane adsorption onto planar faces of water and the fluctuating formation and dissociation of early hydrate cages. The early cages are mostly face-sharing partial small cages, favoring structure II; however, larger cages subsequently appear as a result of steric constraints and thermodynamic preference for the structure I phase. The resulting structure after nucleation and growth is a combination of the two dominant types of hydrate crystals (structure I and structure II), which are linked by uncommon 51263 cages that facilitate structure coexistence without an energetically unfavorable interface.


Annual Review of Chemical and Biomolecular Engineering | 2011

Fundamentals and Applications of Gas Hydrates

Carolyn A. Koh; E. Dendy Sloan; Amadeu K. Sum; David T. Wu

Fundamental understanding of gas hydrate formation and decomposition processes is critical in many energy and environmental areas and has special importance in flow assurance for the oil and gas industry. These areas represent the core of gas hydrate applications, which, albeit widely studied, are still developing as growing fields of research. Discovering the molecular pathways and chemical and physical concepts underlying gas hydrate formation potentially can lead us beyond flowline blockage prevention strategies toward advancing new technological solutions for fuel storage and transportation, safely producing a new energy resource from natural deposits of gas hydrates in oceanic and arctic sediments, and potentially facilitating effective desalination of seawater. The state of the art in gas hydrate research is leading us to new understanding of formation and dissociation phenomena that focuses on measurement and modeling of time-dependent properties of gas hydrates on the basis of their well-established thermodynamic properties.


Langmuir | 2012

Droplet Size Scaling of Water-in-Oil Emulsions under Turbulent Flow

John A. Boxall; Carolyn A. Koh; E. Dendy Sloan; Amadeu K. Sum; David T. Wu

The size of droplets in emulsions is important in many industrial, biological, and environmental systems, as it determines the stability, rheology, and area available in the emulsion for physical or chemical processes that occur at the interface. While the balance of fluid inertia and surface tension in determining droplet size under turbulent mixing in the inertial subrange has been well established, the classical scaling prediction by Shinnar half a century ago of the dependence of droplet size on the viscosity of the continuous phase in the viscous subrange has not been clearly validated in experiment. By employing extremely stable suspensions of highly viscous oils as the continuous phase and using a particle video microscope (PVM) probe and a focused beam reflectance method (FBRM) probe, we report measurements spanning 2 orders of magnitude in the continuous phase viscosity for the size of droplets in water-in-oil emulsions. The wide range in measurements allowed identification of a scaling regime of droplet size proportional to the inverse square root of the viscosity, consistent with the viscous subrange theory of Shinnar. A single curve for droplet size based on the Reynolds and Weber numbers is shown to accurately predict droplet size for a range of shear rates, mixing geometries, interfacial tensions, and viscosities. Viscous subrange control of droplet size is shown to be important for high viscous shear stresses, i.e., very high shear rates, as is desirable or found in many industrial or natural processes, or very high viscosities, as is the case in the present study.


Physical Chemistry Chemical Physics | 2011

The cages, dynamics, and structuring of incipient methane clathrate hydrates

Matthew R. Walsh; J. Daniel Rainey; Patrick G. Lafond; Da-Hye Park; Gregg T. Beckham; Michael D. Jones; Kun-Hong Lee; Carolyn A. Koh; E. Dendy Sloan; David T. Wu; Amadeu K. Sum

Interest in describing clathrate hydrate formation mechanisms spans multiple fields of science and technical applications. Here, we report findings from multiple molecular dynamics simulations of spontaneous methane clathrate hydrate nucleation and growth from fully demixed and disordered two-phase fluid systems of methane and water. Across a range of thermodynamic conditions and simulation geometries and sizes, a set of seven cage types comprises approximately 95% of all cages formed in the nucleated solids. This set includes the ubiquitous 5(12) cage, the 5(12)6(n) subset (where n ranges from 2-4), and the 4(1)5(10)6(n) subset (where n also ranges from 2-4). Transformations among these cages occur via water pair insertions/removals and rotations, and may elucidate the mechanisms of solid-solid structural rearrangements observed experimentally. Some consistency is observed in the relative abundance of cages among all nucleation trajectories. 5(12) cages are always among the two most abundant cage types in the nucleated solids and are usually the most abundant cage type. In all simulations, the 5(12)6(n) cages outnumber their 4(1)5(10)6(n) counterparts with the same number of water molecules. Within these consistent features, some stochasticity is observed in certain cage ratios and in the long-range ordering of the nucleated solids. Even when comparing simulations performed at the same conditions, some trajectories yield swaths of multiple adjacent sI unit cells and long-range order over 5 nm, while others yield only isolated sI unit cells and little long-range order. The nucleated solids containing long-range order have higher 5(12)6(2)/5(12) and 5(12)6(3)/4(1)5(10)6(2) cage ratios when compared to systems that nucleate with little long-range order. The formation of multiple adjacent unit cells of sI hydrate at high driving forces suggests an alternative or addition to the prevailing hydrate nucleation hypotheses which involve formation through amorphous intermediates.


Physical Review B | 2010

Graphene nanoengineering and the inverse Stone-Thrower-Wales defect

Mark T. Lusk; David T. Wu; Lincoln D. Carr

We analyze a new fundamental building block for monolithic nanoengineering on graphene: the Inverse-Stone-Thrower-Wales (ISTW) defect. The ISTW is formed from a pair of joined pentagonal carbon rings placed between a pair of heptagonal rings; the well-known Stone-Thrower-Wales (STW) defect is the same arrangement, but with the heptagonal rather than pentagonal rings joined. When removed and passivated with hydrogen, the structure constitutes a new molecule, diazulene, which may be viewed as the result of an ad-dimer defect on anthracene. Embedding diazulene in the honeycomb lattice, we study the effect of ad-dimers on planar graphene. Because the ISTW defect has yet to be experimentally identified, we examine several synthesis routes and find one for which the barrier is only slightly higher than that associated with adatom hopping on graphene. ISTW and STW defects may be viewed as fundamental building blocks for monolithic structures on graphene. We show how to construct extended defect domains on the surface of graphene in the form of blisters, bubbles, and ridges on a length scale as small as 2 angstroms by 7 angstroms. Our primary tool in these studies is density functional theory.


Journal of Chemical Physics | 2007

Tight-binding molecular dynamics study of the role of defects on carbon nanotube moduli and failure

Richard W. Haskins; Robert S. Maier; Robert M. Ebeling; Charles P. Marsh; Dustin L. Majure; Anthony J. Bednar; Charles R. Welch; Bruce C. Barker; David T. Wu

We performed tight-binding molecular dynamics on single-walled carbon nanotubes with and without a variety of defects to study their effect on the nanotube modulus and failure through bond rupture. For a pristine (5,5) nanotube, Youngs modulus was calculated to be approximately 1.1 TPa, and brittle rupture occurred at a strain of 17% under quasistatic loading. The predicted modulus is consistent with values from experimentally derived thermal vibration and pull test measurements. The defects studied consist of moving or removing one or two carbon atoms, and correspond to a 1.4% defect density. The occurrence of a Stone-Wales defect does not significantly affect Youngs modulus, but failure occurs at 15% strain. The occurrence of a pair of separated vacancy defects lowers Youngs modulus by approximately 160 GPa and the critical or rupture strain to 13%. These defects apparently act independently, since one of these defects alone was independently determined to lower Youngs modulus by approximately 90 GPa, also with a critical strain of 13%. When the pair of vacancy defects adjacent, however, Youngs modulus is lowered by only approximately 100 GPa, but with a lower critical strain of 11%. In all cases, there is noticeable strain softening, for instance, leading to an approximately 250 GPa drop in the apparent secant modulus at 10% strain. When a chiral (10,5) nanotube with a vacancy defect was subjected to tensile strain, failure occurred through a continuous spiral-tearing mechanism that maintained a high level of stress (2.5 GPa) even as the nanotube unraveled. Since the statistical likelihood of defects occurring near each other increases with nanotube length, these studies may have important implications for interpreting the experimental distribution of moduli and critical strains.


Langmuir | 2012

Size-Dependent Properties of Small Unilamellar Vesicles Formed by Model Lipids

Chun-Min Lin; Chun-Shian Li; Yu-Jane Sheng; David T. Wu; Heng-Kwong Tsao

The size-dependent behavior of small unilamellar vesicles is explored by dissipative particle dynamics, including the membrane characteristics and mechanical properties. The spontaneously formed vesicles are in the metastable state and the vesicle size is controlled by the concentration of model lipids. As the vesicle size decreases, the bilayer gets thinner and the area density of heads declines. Nonetheless, the area density in the inner leaflet is higher than that in the outer. The packing parameters are calculated for both leaflets. The result indicates that the shape of lipid in the outer leaflet is like a truncated cone but that in the inner leaflet resembles an inverted truncated cone. Based on a local order parameter, our simulations indication that the orientation order of lipid molecules decreases as the size of the vesicle reduces and this fact reveals that the bilayer becoming thinner for smaller vesicle is mainly attributed to the orientation disorder of the lipids. The membrane tension can be obtained through the Young-Laplace equation. The tension is found to grow with reducing vesicle size. Therefore, small vesicles are less stable against fusion. Using the inflation method, the area stretching and bending moduli can be determined and those moduli are found to grow with reducing size. Nonetheless, a general equation with a single numerical constant can relate bending modulus, area stretching modulus, and bilayer thickness irrespective of the vesicle size. Finally, a simple metastable model is proposed to explain the size-dependent behavior of bilayer thickness, orientation, and tension.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Electric-field–induced assembly and propulsion of chiral colloidal clusters

Fuduo Ma; Sijia Wang; David T. Wu; Ning Wu

Significance Although colloids have been used as molecular analogues for understanding how simple building blocks can assemble into functional materials, they are mostly spherical with isotropic properties. We are still far from truly accessing the diversity of structures desired for either fundamental understanding or technological application. Here, we report the electric-field–directed assembly of asymmetric colloids into clusters that exhibit a ubiquitous type of symmetry in nature: the chirality. We further demonstrate that the chirality induces unbalanced hydrodynamic flow, which causes rotational propulsion of chiral clusters that are fully dictated by their handedness. Both the assembly and propulsion mechanisms discovered can be universal and applied to other types of asymmetric particles. They are also useful in modeling active matter and making microengines. Chiral molecules with opposite handedness exhibit distinct physical, chemical, or biological properties. They pose challenges as well as opportunities in understanding the phase behavior of soft matter, designing enantioselective catalysts, and manufacturing single-handed pharmaceuticals. Microscopic particles, arranged in a chiral configuration, could also exhibit unusual optical, electric, or magnetic responses. Here we report a simple method to assemble achiral building blocks, i.e., the asymmetric colloidal dimers, into a family of chiral clusters. Under alternating current electric fields, two to four lying dimers associate closely with a central standing dimer and form both right- and left-handed clusters on a conducting substrate. The cluster configuration is primarily determined by the induced dipolar interactions between constituent dimers. Our theoretical model reveals that in-plane dipolar repulsion between petals in the cluster favors the achiral configuration, whereas out-of-plane attraction between the central dimer and surrounding petals favors a chiral arrangement. It is the competition between these two interactions that dictates the final configuration. The theoretical chirality phase diagram is found to be in excellent agreement with experimental observations. We further demonstrate that the broken symmetry in chiral clusters induces an unbalanced electrohydrodynamic flow surrounding them. As a result, they rotate in opposite directions according to their handedness. Both the assembly and propulsion mechanisms revealed here can be potentially applied to other types of asymmetric particles. Such kinds of chiral colloids will be useful for fabricating metamaterials, making model systems for both chiral molecules and active matter, or building propellers for microscale transport.


Journal of Physical Chemistry B | 2014

Reaction coordinate of incipient methane clathrate hydrate nucleation.

Brian C. Barnes; Brandon C. Knott; Gregg T. Beckham; David T. Wu; Amadeu K. Sum

Nucleation from solution is a ubiquitous phenomenon with relevance to myriad scientific disciplines, including pharmaceuticals, biomineralization, and disease. One prominent example is the nucleation of clathrate hydrates, multicomponent crystalline inclusion compounds relevant to the energy industry where they block pipelines and also constitute a potential vast energy resource. Despite their importance, the molecular mechanism of incipient hydrate formation remains unknown. Herein, we employ advanced molecular simulation tools (pB histogram, equilibrium path sampling) to provide a statistical-mechanical basis for extracting physical insight into the molecular steps by which clathrates form. Through testing the Mutually Coordinated Guest (MCG) order parameter, we demonstrate that both guest (methane) and host (water) structuring are crucial to accurately describe the nucleation of hydrates and determine a critical nucleus size of MCG-1 = 16 at 255 K and 500 bar. Equipped with a validated (and novel) reaction coordinate, subsequent equilibrium path sampling simulations yield the free energy barrier and nucleation rate. The resulting quantitative nucleation process is described by the MCG clustering mechanism. This constitutes a significant advance in the field of hydrates research, as the fitness of a molecular descriptor has never been statistically verified. More broadly, this work has significance to a wide range of multicomponent nucleation contexts wherein the formation mechanism depends on contributions from both solute and solvent.


Journal of Chemical Physics | 2003

Role of intramolecular energy on polyolefin miscibility: Isotactic polypropylene/polyethylene blends

David R. Heine; David T. Wu; John G. Curro; Gary S. Grest

Self-consistent polymer reference interaction site model (PRISM) calculations and molecular dynamics (MD) simulations were performed for a blend of isotactic polypropylene (iPP) and polyethylene (PE) at various compositions and chain lengths. United atom models were used for both components. Both PRISM theory and MD simulations predicted that the change in intramolecular energy going from the melt to the blend for each species was a significant positive contribution to the total mixing energy. Furthermore, this intramolecular heat of mixing was dominated by the torsional and van der Waals contributions. Constant pressure MD simulations indicated that, with the united atom parameters used, the iPP/PE blend had essentially zero volume change of mixing. MD simulations were used to compute the partial structure factors for the blend and together with the standard random phase approximation analysis were used to estimate the small angle neutron scattering (SANS) χ parameter. Good agreement was found between es...

Collaboration


Dive into the David T. Wu's collaboration.

Top Co-Authors

Avatar

Amadeu K. Sum

Colorado School of Mines

View shared research outputs
Top Co-Authors

Avatar

Carolyn A. Koh

Colorado School of Mines

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. Dendy Sloan

Colorado School of Mines

View shared research outputs
Top Co-Authors

Avatar

John G. Curro

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

David R. Heine

Colorado School of Mines

View shared research outputs
Top Co-Authors

Avatar

Ning Lu

Colorado School of Mines

View shared research outputs
Top Co-Authors

Avatar

Renfeng Hu

Colorado School of Mines

View shared research outputs
Top Co-Authors

Avatar

Gary S. Grest

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge