David T. Yue
Johns Hopkins University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David T. Yue.
Science | 1995
Marita de Leon; Yan Wang; Lisa P. Jones; Edward Perez-Reyes; Xiangyang Wei; Tuck Wah Soong; Terry P. Snutch; David T. Yue
Intracellular calcium (Ca2+) inhibits the opening of L-type (α1C) Ca2+ channels, providing physiological control of Ca2+ entry into a wide variety of cells. A structural determinant of this Ca2+-sensitive inactivation was revealed by chimeric Ca2+ channels derived from parental α1C and α1E channels, the latter of which is a neuronal channel lacking Ca2+ inactivation. A consensus Ca2+-binding motif (an EF hand), located on the α1C subunit, was required for Ca2+ inactivation. Donation of the α1C EF-hand region to the α1E channel conferred the Ca2+-inactivating phenotype. These results strongly suggest that Ca2+ binding to the α1C subunit initiates Ca2+ inactivation.
Neuron | 2003
Haoya Liang; Carla D. DeMaria; Michael G. Erickson; Masayuki X. Mori; David T. Yue
L-type (CaV1.2) and P/Q-type (CaV2.1) calcium channels possess lobe-specific CaM regulation, where Ca2+ binding to one or the other lobe of CaM triggers regulation, even with inverted polarity of modulation between channels. Other major members of the CaV1-2 channel family, R-type (CaV2.3) and N-type (CaV2.2), have appeared to lack such CaM regulation. We report here that R- and N-type channels undergo Ca(2+)-dependent inactivation, which is mediated by the CaM N-terminal lobe and present only with mild Ca2+ buffering (0.5 mM EGTA) characteristic of many neurons. These features, together with the CaM regulatory profiles of L- and P/Q-type channels, are consistent with a simplifying principle for CaM signal detection in CaV1-2 channels-independent of channel context, the N- and C-terminal lobes of CaM appear invariably specialized for decoding local versus global Ca2+ activity, respectively.
Neuron | 1994
John P. Imredy; David T. Yue
Abstract Many high threshold, voltage-gated Ca 2+ channels, including the dihydropyridine-sensitive class (L-type), inactivate in response not only to voltage, but also to entry of Ca 2+ . Despite the physiological importance of this Ca 2+ -sensitive inactivation, its molecular mechanism is understood only in broad outline. We now demonstrate that Ca 2+ -dependent inactivation transpires by a Ca 2+ -induced shift of channel gating to a low open probability mode, distinguished by a more than 100-fold reduction of entry rate to the open state. A gating mechanism that explains this shift quantitatively and enables successful separation of Ca 2+ - and voltage-sensitive forms of inactivation is deduced and tested. Finally, both calmodulin activation and channel (de)phosphorylation are excluded as significant signaling events underlying Ca 2+ -induced mode shifts, leaving direct binding of Ca 2+ to the channel as a likely chemical initiation event for inactivation.
Neuron | 2003
Michael G. Erickson; Haoya Liang; Masayuki X. Mori; David T. Yue
L-type Ca(2+) channels possess a Ca(2+)-dependent inactivation (CDI) mechanism, affording feedback in diverse neurobiological settings and serving as prototype for unconventional calmodulin (CaM) regulation emerging in many Ca(2+) channels. Crucial to such regulation is the preassociation of Ca(2+)-free CaM (apoCaM) to channels, facilitating rapid triggering of CDI as Ca(2+)/CaM shifts to a channel IQ site (IQ). Progress has been hindered by controversy over the preassociation site, as identified by in vitro assays. Most critical has been the failure to resolve a functional signature of preassociation. Here, we deploy novel FRET assays in live cells to identify a 73 aa channel segment, containing IQ, as the critical preassociation pocket. IQ mutations disrupting preassociation revealed accelerated voltage-dependent inactivation (VDI) as the functional hallmark of channels lacking preassociated CaM. Hence, the alpha(1C) IQ segment is multifunctional-serving as ligand for preassociation and as Ca(2+)/CaM effector site for CDI.
Biophysical Journal | 2000
Blaise Z. Peterson; Joanna S. Lee; Jennifer G. Mulle; Yan Wang; Marita de Leon; David T. Yue
L-type (alpha(1C)) calcium channels inactivate rapidly in response to localized elevation of intracellular Ca(2+), providing negative Ca(2+) feedback in a diverse array of biological contexts. The dominant Ca(2+) sensor for such Ca(2+)-dependent inactivation has recently been identified as calmodulin, which appears to be constitutively tethered to the channel complex. This Ca(2+) sensor induces channel inactivation by Ca(2+)-dependent CaM binding to an IQ-like motif situated on the carboxyl tail of alpha(1C). Apart from the IQ region, another crucial site for Ca(2+) inactivation appears to be a consensus Ca(2+)-binding, EF-hand motif, located approximately 100 amino acids upstream on the carboxyl terminus. However, the importance of this EF-hand motif for channel inactivation has become controversial since the original report from our lab implicating a critical role for this domain. Here, we demonstrate not only that the consensus EF hand is essential for Ca(2+) inactivation, but that a four-amino acid cluster (VVTL) within the F helix of the EF-hand motif is itself essential for Ca(2+) inactivation. Mutating these amino acids to their counterparts in non-inactivating alpha(1E) calcium channels (MYEM) almost completely ablates Ca(2+) inactivation. In fact, only a single amino acid change of the second valine within this cluster to tyrosine (V1548Y) supports much of the functional knockout. However, mutations of presumed Ca(2+)-coordinating residues in the consensus EF hand reduce Ca(2+) inactivation by only approximately 2-fold, fitting poorly with the EF hand serving as a contributory inactivation Ca(2+) sensor, in which Ca(2+) binds according to a classic mechanism. We therefore suggest that while CaM serves as Ca(2+) sensor for inactivation, the EF-hand motif of alpha(1C) may support the transduction of Ca(2+)-CaM binding into channel inactivation. The proposed transduction role for the consensus EF hand is compatible with the detailed Ca(2+)-inactivation properties of wild-type and mutant V1548Y channels, as gauged by a novel inactivation model incorporating multivalent Ca(2+) binding of CaM.
Circulation Research | 1990
Eduardo Marban; M Kitakaze; Yukihiro Koretsune; David T. Yue; V. P. Chacko; Martin M. Pike
Calcium has been implicated as a mediator of cell injury in ischemia and reperfusion, but direct measurements of Ca2+ are required to refine this idea. We used nuclear magnetic resonance spectroscopy and the Ca2+ indicator 5F-BAPTA to measure [Ca2+]i in perfused ferret hearts. Several lines of evidence are presented to show that loading with the acetoxymethyl ester of 5F-BAPTA is not significantly complicated by accumulation of partially de-esterified metabolites, compartmentalization into mitochondria, or disproportionate uptake into endothelial cells. During 20 minutes of total global ischemia at 30 degrees C, time-averaged [Ca2+]i increased significantly, reaching peak values roughly three times control at 15-20 minutes. Reperfusion resulted in a persistent elevation of [Ca2+]i during the first 5 minutes, but not afterward. Although the nonlinear response of 5F-BAPTA to [Ca2+] leads to underestimation of the true time-averaged [Ca2+]i, the measured alterations of intracellular Ca2+ homeostasis during ischemia are large compared with the likely errors in quantification. Phosphorus nuclear magnetic resonance spectroscopy of 5F-BAPTA-loaded hearts reveals changes during ischemia similar to those recorded previously in hearts not containing a Ca2+ indicator. Developed pressure recovers to only 50% of control values during reflow, indicating that the presence of 5F-BAPTA in the cytosol does not protect against stunning, at least when the extracellular calcium concentration has been raised to 8 mM. We conclude that 5F-BAPTA provides useful measurements that reveal that time-averaged [Ca2+]i rises during ischemia and returns to control levels soon after reperfusion.
Nature | 2008
Ivy E. Dick; Michael R. Tadross; Haoya Liang; Lai Hock Tay; Wanjun Yang; David T. Yue
Ca2+/calmodulin-dependent regulation of voltage-gated CaV1–2 Ca2+ channels shows extraordinary modes of spatial Ca2+ decoding and channel modulation, vital for many biological functions. A single calmodulin (CaM) molecule associates constitutively with the channel’s carboxy-terminal tail, and Ca2+ binding to the C-terminal and N-terminal lobes of CaM can each induce distinct channel regulations. As expected from close channel proximity, the C-lobe responds to the roughly 100-μM Ca2+ pulses driven by the associated channel, a behaviour defined as ‘local Ca2+ selectivity’. Conversely, all previous observations have indicated that the N-lobe somehow senses the far weaker signals from distant Ca2+ sources. This ‘global Ca2+ selectivity’ satisfies a general signalling requirement, enabling a resident molecule to remotely sense cellular Ca2+ activity, which would otherwise be overshadowed by Ca2+ entry through the host channel. Here we show that the spatial Ca2+ selectivity of N-lobe CaM regulation is not invariably global but can be switched by a novel Ca2+/CaM-binding site within the amino terminus of channels (NSCaTE, for N-terminal spatial Ca2+ transforming element). Native CaV2.2 channels lack this element and show N-lobe regulation with a global selectivity. On the introduction of NSCaTE into these channels, spatial Ca2+ selectivity transforms from a global to local profile. Given this effect, we examined CaV1.2/CaV1.3 channels, which naturally contain NSCaTE, and found that their N-lobe selectivity is indeed local. Disruption of this element produces a global selectivity, confirming the native function of NSCaTE. Thus, differences in spatial selectivity between advanced CaV1 and CaV2 channel isoforms are explained by the presence or absence of NSCaTE. Beyond functional effects, the position of NSCaTE on the channel’s amino terminus indicates that CaM can bridge the amino terminus and carboxy terminus of channels. Finally, the modularity of NSCaTE offers practical means for understanding the basis of global Ca2+ selectivity.
The Journal of Physiology | 2002
Henry M. Colecraft; Shoji X. Takahashi; Dipayan Chaudhuri; Scott Mittman; Vasan Yegnasubramanian; Rebecca S. Alvania; David C. Johns; Eduardo Marban; David T. Yue
Recombinant adenoviruses were used to overexpress green fluorescent protein (GFP)‐fused auxiliary Ca2+ channel β subunits (β1‐β4) in cultured adult rat heart cells, to explore new dimensions of β subunit functions in vivo. Distinct β‐GFP subunits distributed differentially between the surface sarcolemma, transverse elements, and nucleus in single heart cells. All β‐GFP subunits increased the native cardiac whole‐cell L‐type Ca2+ channel current density, but produced distinctive effects on channel inactivation kinetics. The degree of enhancement of whole‐cell current density was non‐uniform between β subunits, with a rank order of potency β2aαβ4 > β1b > β3. For each β subunit, the increase in L‐type current density was accompanied by a correlative increase in the maximal gating charge (Qmax) moved with depolarization. However, β subunits produced characteristic effects on single L‐type channel gating, resulting in divergent effects on channel open probability (Po). Quantitative analysis and modelling of single‐channel data provided a kinetic signature for each channel type. Spurred on by ambiguities regarding the molecular identity of the actual endogenous cardiac L‐type channel β subunit, we cloned a new rat β2 splice variant, β2b, from heart using 5′ rapid amplification of cDNA ends (RACE) PCR. By contrast with β2a, expression of β2b in heart cells yielded channels with a microscopic gating signature virtually identical to that of native unmodified channels. Our results provide novel insights into β subunit functions that are unattainable in traditional heterologous expression studies, and also provide new perspectives on the molecular identity of the β subunit component of cardiac L‐type Ca2+ channels. Overall, the work establishes a powerful experimental paradigm to explore novel functions of ion channel subunits in their native environments.
Neuron | 1998
Parag G. Patil; David L. Brody; David T. Yue
We have investigated the inactivation mechanism of neuronal N-, P/Q-, and R-type calcium channels. Although channels inactivate slowly during square-pulse depolarization, as observed previously, we now find that they inactivate profoundly during a train of action potential (AP) waveforms. The apparent paradox arises from a voltage-dependent mechanism in which channels inactivate preferentially from intermediate closed states along the activation pathway. Inactivation can therefore extend beyond the brief duration of AP waveforms to continue between spikes, as the channel undergoes repetitive cycles of activation and deactivation. The extent of inactivation during a train is strongly affected by the subunit composition of channels. Preferential closed-state inactivation of neuronal calcium channels could produce widely variable depression of Ca2+ entry during a train of APs.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Carla D. DeMaria; Henry M. Colecraft; David T. Yue
Engineered calmodulins (CaMs), rendered Ca2+-insensitive by mutations, function as dominant negatives in heterologous systems, and have revealed mechanisms of ion channel modulation by Ca2+/CaM. The use of these CaMs in native mammalian cells now emerges as a strategy to unmask the biology of such Ca2+ feedback. Here, we developed recombinant adenoviruses bearing engineered CaMs to facilitate their expression in adult heart cells, where Ca2+ regulation may be essential for moment-to-moment control of the heartbeat. Engineered CaMs not only eliminated the Ca2+-dependent inactivation of native calcium channels, but exposed an unexpectedly large impact of removing such feedback: the unprecedented (4- to 5-fold) prolongation of action potentials. This striking result recasts the basic paradigm for action-potential control and illustrates the promise of virally delivered engineered CaM to investigate the biology of numerous other CaM-signaling pathways.