Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David Tai Wai Lau is active.

Publication


Featured researches published by David Tai Wai Lau.


Journal of Ethnopharmacology | 2009

Cordysinocan, a polysaccharide isolated from cultured Cordyceps, activates immune responses in cultured T-lymphocytes and macrophages: signaling cascade and induction of cytokines.

J.K.H. Cheung; Jun Li; Anna Wing Han Cheung; Yue Zhu; Ken Y.Z. Zheng; Cathy W. C. Bi; Ran Duan; Roy Chi Yan Choi; David Tai Wai Lau; Tina Ting Xia Dong; B.W.C. Lau; Karl Wah Keung Tsim

Cordyceps sinensis, a well-known traditional Chinese medicine, possesses activities in anti-tumor, anti-oxidation and stimulating the immune response; however, the identity of active component(s) is not determined. A strain of Cordyceps sinensis, namely UST 2000, has been isolated. By using activity-guided purification, a novel polysaccharide of molecular weight approximately 82 kDa was isolated from the conditioned medium of cultured Cordyceps. The isolated exo-polysaccharide, namely cordysinocan, contains glucose, mannose, galactose in a ratio of 2.4:2:1. In cultured T-lymphocytes, application of cordysinocan induced the cell proliferation and the secretion of interleukin-2, interleukin-6 and interleukin-8. In addition, the phosphorylation of extracellular signal-regulated kinases (ERK) was induced transiently by the treatment of cordysinocan. Moreover, application of cordysinocan in cultured macrophages increased the phagocytosis activity and the enzymatic activity of acid phosphatase. These results therefore verify the important role of Cordyceps polysaccharide in triggering such immune responses.


Journal of Agricultural and Food Chemistry | 2011

Flavonoids from Radix Astragali Induce the Expression of Erythropoietin in Cultured Cells: A Signaling Mediated via the Accumulation of Hypoxia-Inducible Factor-1α

Ken Y.Z. Zheng; Roy Chi Yan Choi; Anna Wing Han Cheung; Ava J. Y. Guo; Cathy W. C. Bi; Kevin Y. Zhu; Qiang Fu; Yingqing Du; Wendy L. Zhang; Janis Ya-Xian Zhan; Ran Duan; David Tai Wai Lau; Tina Ting Xia Dong; Karl Wah Keung Tsim

Radix Astragali (RA) is commonly used as a health food supplement to reinforce the body vital energy. Flavonoids, including formononetin, ononin, calycosin, and calycosin-7-O-β-d-glucoside, are considered to be the major active ingredients within RA. Here, we provided different lines of evidence that the RA flavonoids stimulated the expression of erythropoietin (EPO), the central regulator of red blood cell mass, in cultured human embryonic kidney fibroblasts (HEK293T). A plasmid containing hypoxia response element (HRE), a critical regulator for EPO transcription, was tagged upstream of a firefly luciferase gene, namely, pHRE-Luc, which was being transfected into fibroblasts. The application of RA flavonoids onto the transfected cells induced the transcriptional activity of HRE. To account for the transcriptional activation after the treatment of flavonoids, the expression of hypoxia-inducible factor-1α (HIF-1α) was markedly increased: The increase was in both mRNA and protein levels. In addition, the degradation of HIF-1α was reduced under the effect of flavonoids. The regulation of HIF-1α therefore could account for the activation of EPO expression mediated by the RA flavonoids. The current results therefore reveal the function of this herb in enhancing hematopoietic functions.


Journal of Ethnopharmacology | 2010

The expression of erythropoietin triggered by danggui buxue tang, a Chinese herbal decoction prepared from radix Astragali and radix Angelicae Sinensis, is mediated by the hypoxia-inducible factor in cultured HEK293T cells.

Ken Y.Z. Zheng; Roy Chi Yan Choi; Heidi Q.H. Xie; Anna Wing Han Cheung; Ava J. Y. Guo; Kawing Leung; Vicky P. Chen; Cathy W. C. Bi; Kevin Y. Zhu; Gallant K. L. Chan; Qiang Fu; David Tai Wai Lau; Tina Ting Xia Dong; Kui J. Zhao; Karl Wah Keung Tsim

ETHNOPHARMACOLOGICAL EVIDENCE Danggui buxue tang (DBT), a Chinese medicinal decoction that is being commonly used as hematopoietic medicine to treating woman menopausal irregularity, contains two herbs: radix Astragali and radix Angelicae Sinensis. Pharmacological results indicate that DBT can stimulate the production of erythropoietin (EPO), a specific hematopoietic growth factor, in cultured cells. AIM OF THE STUDY In order to reveal the mechanism of DBTs hematopoietic function, this study investigated the activity of the DBT-induced EPO expression and the upstream regulatory cascade of EPO via hypoxia-induced signaling in cultured kidney fibroblasts (HEK293T). MATERIALS AND METHODS DBT-induced mRNA expressions were revealed by real-time PCR, while the change of protein expressions were analyzed by Western blotting. For the analysis of hypoxia-dependent signaling, a luciferase reporter was used to report the transcriptional activity of hypoxia response element (HRE). RESULTS The plasmid containing HRE, being transfected into HEK293T, was highly responsive to the challenge of DBT application. To account for the transcriptional activation of HRE, DBT treatment was shown to increase the mRNA and protein expressions of hypoxia-inducible factor-1α (HIF-1α). In addition, the activation of Raf/MEK/ERK signaling pathway by DBT could also enhance the translation of HIF-1α, suggesting the dual actions of DBT in stimulating the EPO expression in kidney cells. CONCLUSION Our study indicates that HIF pathway plays an essential role in directing DBT-induced EPO expression in kidney. These results provide one of the molecular mechanisms of this ancient herbal decoction for its hematopoietic function.


Journal of Agricultural and Food Chemistry | 2013

Chemical and Biological Assessment of Ziziphus jujuba Fruits from China: Different Geographical Sources and Developmental Stages

Jianping Chen; Zhonggui Li; Maitinuer Maiwulanjiang; Wendy L. Zhang; Janis Ya-Xian Zhan; Candy Ting Wai Lam; Kevin Y. Zhu; Ping Yao; Roy Chi Yan Choi; David Tai Wai Lau; Tina Ting Xia Dong; Karl Wah Keung Tsim

Chinese date, the fruit of Ziziphus jujuba Mill., has thousands of years cultivation history, and about 700 cultivars of dates in China. Two types of dates are commonly found in the market: (i) fresh immature dates consumed as fruits, and (ii) dried mature dates used as Chinese medicines. Here, chemical and biological properties of these dates were revealed. Different sources of dates showed similar chemical profiles; however, the amounts of identified chemicals showed a great variation. The amount of nucleotides, flavonoids and polysaccharides in dates could be affected by its maturity and drying process. In parallel, the antioxidative functions of their extracts were compared. The date extracts protected PC12 cells against tBHP-induced cytotoxicity, and which also stimulated the transcriptional activity of antioxidant response element. The antioxidative effects were varied among different dates. The current results suggested the optimization of sources and specific usage of different maturity dates.


Chinese Medicine | 2012

Kaempferol as a flavonoid induces osteoblastic differentiation via estrogen receptor signaling

Ava J. Y. Guo; Roy Chi Yan Choi; Ken Yuzhong Zheng; Vicky P. Chen; Tina Ting Xia Dong; Zhengtao Wang; Günter Vollmer; David Tai Wai Lau; Karl Wah Keung Tsim

BackgroundFlavonoids, a group of compounds mainly derived from vegetables and herbal medicines, chemically resemble estrogen and some have been used as estrogen substitutes. Kaempferol, a flavonol derived from the rhizome of Kaempferia galanga L., is a well-known phytoestrogen possessing osteogenic effects that is also found in a large number of plant foods.The herb K. galanga is a popular traditional aromatic medicinal plant that is widely used as food spice and in medicinal industries. In the present study, both the estrogenic and osteogenic properties of kaempferol are evaluated.MethodsKaempferol was first evaluated for its estrogenic properties, including its effects on estrogen receptors. The osteogenic properties of kaempferol were further determined its induction effects on specific osteogenic enzymes and genes as well as the mineralization process in cultured rat osteoblasts.ResultsKaempferol activated the transcriptional activity of pERE-Luc (3.98 ± 0.31 folds at 50 μM) and induced estrogen receptor α (ERα) phosphorylation in cultured rat osteoblasts, and this ER activation was correlated with induction and associated with osteoblast differentiation biomarkers, including alkaline phosphatase activity and transcription of osteoblastic genes, e.g., type I collagen, osteonectin, osteocalcin, Runx2 and osterix. Kaempferol also promoted the mineralization process of osteoblasts (4.02 ± 0.41 folds at 50 μM). ER mediation of the kaempferol-induced effects was confirmed by pretreatment of the osteoblasts with an ER antagonist, ICI 182,780, which fully blocked the induction effect.ConclusionOur results showed that kaempferol stimulates osteogenic differentiation of cultured osteoblasts by acting through the estrogen receptor signaling.


PLOS ONE | 2013

Yu Ping Feng San, an ancient Chinese herbal decoction containing Astragali Radix, Atractylodis Macrocephalae Rhizoma and Saposhnikoviae Radix, regulates the release of cytokines in murine macrophages.

Crystal Ying Qing Du; Roy Chi Yan Choi; Ken Y.Z. Zheng; Tina Ting Xia Dong; David Tai Wai Lau; Karl Wah Keung Tsim

Yu Ping Feng San (YPFS), a Chinese herbal decoction, is composed of Astragali Radix (AR; Huangqi), Atractylodis Macrocephalae Rhizoma (AMR; Baizhu) and Saposhnikoviae Radix (SR; Fangfeng) in a weight ratio of 1∶2∶1. Clinically, YPFS has been widely used to regulate immune functions; however, the action mechanism of it is not known. Here, we addressed this issue by providing detail analyses of chemical and biological properties of YPFS. By using rapid resolution liquid chromatography coupled with mass spectrometry, fifteen chemicals deriving from different herbs of YPFS were determined, and which served as a control for the standardization of the herbal extract of YPFS. In general, the amounts of chosen chemical markers were higher in a preparation of YPFS as compared to that of single herb or two-herb compositions. In order to reveal the immune functions of YPFS, the standardized extract was applied onto cultured murine macrophages. The treatment of YPFS stimulated the mRNA and protein expressions of pro-inflammatory cytokines via activation of NF-κB by enhancing IκBα degradation. In contrast, the application of YPFS suppressed the expressions of pro-inflammatory cytokines significantly in the lipopolysaccharide (LPS)-induced chronic inflammation model. In addition, YPFS could up regulate the phagocytic activity in cultured macrophages. These results therefore supported the bi-directional immune-modulatory roles of YPFS in regulating the releases of cytokines from macrophages.


Journal of Agricultural and Food Chemistry | 2011

Chemical and biological assessment of Angelicae Sinensis Radix after processing with wine: an orthogonal array design to reveal the optimized conditions.

Janis Ya-Xian Zhan; Ken Yu Zhong Zheng; Kevin Y. Zhu; Cathy W. C. Bi; Wendy L. Zhang; Crystal Ying Qing Du; Qiang Fu; Tina Ting Xia Dong; Roy Chi Yan Choi; Karl Wah Keung Tsim; David Tai Wai Lau

The roots of Angelica sinensis [Angelica Sinensis Radix (ASR)] have been used as a common health food supplement for womens care for thousands of years in China. According to Asian tradition, ASR could be processed with the treatment of wine, which subsequently promoted the biological functions of ASR. By chemical and biological assessments, an orthogonal array design was employed here to determine the roles of three variable parameters in the processing of ASR, including oven temperature, baking time, and flipping frequency. The results suggested that oven temperature and baking time were two significant factors, while flipping frequency was a subordinate factor. The optimized condition of processing with wine therefore was considered to be heating in an oven at 80 °C for 90 min with flipping twice per hour. Under the optimized processing conditions, the solubilities of ferulic acid and Z-ligustilide from ASR were markedly increased and decreased, respectively. In parallel, the biological functions of processed ASR were enhanced in both anti-platelet aggregation and estrogenic activation; these increased functions could be a result of the altered levels of ferulic acid and Z-ligustilide in wine-processed ASR. Thus, the chemical and biological assessment of the processed ASR was in full accordance with the Chinese old tradition.


Journal of Alzheimer's Disease | 2010

A flavonol glycoside, isolated from roots of Panax notoginseng, reduces amyloid-beta-induced neurotoxicity in cultured neurons: signaling transduction and drug development for Alzheimer's disease.

Roy Chi Yan Choi; Judy Ting Ting Zhu; Ka Wing Leung; Glanice K.Y. Chu; Heidi Qunhui Xie; Vicky P. Chen; Ken Yu Zhong Zheng; David Tai Wai Lau; Tina Ting Xia Dong; Peter C.Y. Chow; Yifan Han; Zhengtao Wang; Karl Wah Keung Tsim

A Radix Notoginseng flavonol glycoside (RNFG), quercetin 3-O-beta-D-xylopyranosyl-beta-D-galactopyranoside, was isolated from roots of Panax notoginseng. Among different biological properties tested, RNFG possessed a strong activity in preventing amyloid-beta (Abeta)-induced cell death. In an in vitro assay, RNFG inhibited the aggregation of Abeta in a dose-dependent manner. Moreover, application of RNFG in cultured cortical neurons, or PC12 cells, reduced the Abeta-induced cell death in time- and dose-dependent manners, with the suppression of Abeta-induced DNA fragmentation and caspase-3 activation. In cultured neurons, the pre-treatment of RNFG abolished the increase of Ca(2+) mobilization triggered by Abeta. The neuroprotective properties of RNFG required a specific sugar attachment within the main chemical backbone because the flavonol backbone by itself did not show any protective effect. In memory impairment experiments using the passive avoidance task, the administration of RNFG reduced brain damage in scopolamine-treated rats. These results therefore reveal a novel function of Radix Notoginseng and its flavonol glycoside that could be very useful in developing food supplements for the prevention, or potential treatment, of Alzheimers disease.


Evidence-based Complementary and Alternative Medicine | 2012

Isorhamnetin, A Flavonol Aglycone from Ginkgo biloba L., Induces Neuronal Differentiation of Cultured PC12 Cells: Potentiating the Effect of Nerve Growth Factor

Sherry L. Xu; Roy Chi Yan Choi; Kevin Y. Zhu; Kawing Leung; Ava J. Y. Guo; Dan Bi; Hong Xu; David Tai Wai Lau; Tina Ting Xia Dong; Karl Wah Keung Tsim

Flavonoids, a group of compounds mainly derived from vegetables and herbal medicines, share a chemical resemblance to estrogen, and indeed some of which have been used as estrogen substitutes. In searching for possible functions of flavonoids, the neuroprotective effect in brain could lead to novel treatment, or prevention, for neurodegenerative diseases. Here, different subclasses of flavonoids were analyzed for its inductive role in neurite outgrowth of cultured PC12 cells. Amongst the tested flavonoids, a flavonol aglycone, isorhamnetin that was isolated mainly from the leaves of Ginkgo biloba L. showed robust induction in the expression of neurofilament, a protein marker for neurite outgrowth, of cultured PC12 cells. Although isorhamnetin by itself did not show significant inductive effect on neurite outgrowth of cultured PC12 cells, the application of isorhamnetin potentiated the nerve growth factor- (NGF-)induced neurite outgrowth. In parallel, the expression of neurofilaments was markedly increased in the cotreatment of NGF and isorhamnetin in the cultures. The identification of these neurite-promoting flavonoids could be very useful in finding potential drugs, or food supplements, for treating various neurodegenerative diseases, including Alzheimers disease and depression.


Evidence-based Complementary and Alternative Medicine | 2012

A Standardized Chinese Herbal Decoction, Kai-Xin-San, Restores Decreased Levels of Neurotransmitters and Neurotrophic Factors in the Brain of Chronic Stress-Induced Depressive Rats

Kevin Y. Zhu; Qing-Qiu Mao; Siu-Po Ip; Roy Chi Yan Choi; Tina Ting-Xia Dong; David Tai Wai Lau; Karl Wah Keung Tsim

Kai-xin-san (KXS), a Chinese herbal decoction being prescribed by Sun Simiao in Beiji Qianjin Yaofang about 1400 years ago, contains Ginseng Radix et Rhizoma, Polygalae Radix, Acori tatarinowii Rhizoma, and Poria. KXS has been used to treat stress-related psychiatric disease with the symptoms of depression and forgetfulness in ancient China until today. However, the mechanism of its antidepression action is still unknown. Here, the chronic mild-stress-(CMS-) induced depressive rats were applied in exploring the action mechanisms of KXS treatment. Daily intragastric administration of KXS for four weeks significantly alleviated the CMS-induced depressive symptoms displayed by enhanced sucrose consumption. In addition, the expressions of those molecular bio-markers relating to depression in rat brains were altered by the treatment of KXS. These KXS-regulated brain biomarkers included: (i) the levels of dopamine, norepinephrine, and serotonin (ii) the transcript levels of proteins relating to neurotransmitter metabolism; (iii) the transcript levels of neurotrophic factors and their receptors. The results suggested that the anti-depressant-like action of KXS might be mediated by an increase of neurotransmitters and expression of neurotrophic factors and its corresponding receptors in the brain. Thus, KXS could serve as alternative medicine, or health food supplement, for patients suffering from depression.

Collaboration


Dive into the David Tai Wai Lau's collaboration.

Top Co-Authors

Avatar

Karl Wah Keung Tsim

Hong Kong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Tina Ting Xia Dong

Hong Kong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Roy Chi Yan Choi

Hong Kong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Kevin Y. Zhu

Hong Kong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Cathy W. C. Bi

Hong Kong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Wendy L. Zhang

Hong Kong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Ken Y.Z. Zheng

Hong Kong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Qiang Fu

Hong Kong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Janis Ya-Xian Zhan

Hong Kong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Ava J. Y. Guo

Hong Kong University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge