Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David Tsukada is active.

Publication


Featured researches published by David Tsukada.


Environmental Toxicology and Chemistry | 2010

Analysis, occurrence, and toxic potential of pyrethroids, and fipronil in sediments from an urban estuary

Wenjian Lao; David Tsukada; Darrin J. Greenstein; Steven M. Bay; Keith A. Maruya

Eight pyrethroids and fipronil and its three major degradates were analyzed in urban estuarine sediments that exhibited a range of toxic effects to an amphipod test species. Sediments from Ballona Creek, an urban estuary in Southern California (USA), collected during three dry season events were analyzed by gas chromatography with electron capture and negative chemical ionization mass spectrometric detection (GC-ECD and GC-NCI-MS). The two detection methods were in agreement for intermediate levels of pyrethroid contamination (10-50 ng/g dry wt) but deviated for both low and high concentrations (< 5 and > 50 ng/g). Sediments contained total pyrethroids as high as 473 ng/g with permethrin, bifenthrin, and cypermethrin as the most abundant compounds. In contrast, fipronil and its desulfinyl, sulfide, and sulfone degradates were detected at much lower levels (<or= 0.18-16 ng/g). Toxic units estimated for these compounds revealed that bifenthrin and cypermethrin were likely contributors to the mortality observed in tests with the estuarine amphipod Eohaustorius estuarius. Although fipronil was not a likely contributor to the observed mortality, the concentrations detected may be of concern for more sensitive crustacean species. Furthermore, the spatial pattern of pyrethroid contamination and potential toxicity was highly correlated with fine-grained substrate, which shifted to downstream stations within a three-month period during the dry season.


Environmental Toxicology and Chemistry | 2009

A passive sampler based on solid-phase microextraction for quantifying hydrophobic organic contaminants in sediment pore water

Keith A. Maruya; Eddy Y. Zeng; David Tsukada; Steven M. Bay

Sediment-quality assessment often is hindered by the lack of agreement between chemical and biological lines of evidence. One limitation is that the bulk sediment toxicant concentration, the most widely used chemical parameter, does not always represent the bioavailable concentration, particularly for hydrophobic organic compounds (HOCs) in highly contaminated sediments. In the present study, we developed and tested a pore-water sampler that uses solid-phase microextraction (SPME) to measure freely dissolved (bioavailable) HOC concentrations. A single polydimethylsiloxane (PDMS)-coated SPME fiber is secured in a compact, protective housing that allows aqueous exchange with whole sediment while eliminating direct contact with sediment particles. Fibers with three PDMS coating thicknesses were first calibrated for 12 model HOCs of current regulatory concern. Precalibrated samplers were exposed to spiked estuarine sediment in laboratory microcosms to determine the time to equilibrium and the equilibrium concentrations across a range of sediment contamination. Time to equilibrium ranged from 14 to 110 d, with 30 d being sufficient for more than half the target HOCs. Equilibrium SPME measurements, ranging from 0.009 to 2,400 ng/L, were highly correlated with but, in general, lower than HOC pore-water concentrations determined independently by liquid-liquid extraction. This concept shows promise for directly measuring the freely dissolved concentration of HOCs in sediment pore water, a previously difficult-to-measure parameter that will improve our ability to assess the impacts of contaminated sediments.


Environmental Toxicology and Chemistry | 2010

Exchange of polycyclic aromatic hydrocarbons among the atmosphere, water, and sediment in coastal embayments of southern California, USA

Lisa D. Sabin; Keith A. Maruya; Wenjian Lao; Dario W. Diehl; David Tsukada; Keith D. Stolzenbach; Kenneth C. Schiff

The present study investigated cross-media transport between both the sediment and the water column and between the water column and the atmosphere, to understand the role of each compartment as a source or a sink of polycyclic aromatic hydrocarbons (PAH) in southern California, USA, coastal waters. Concentrations of PAH were measured in the atmosphere, water column, and sediment at four water-quality-impaired sites in southern California: Ballona Creek Estuary, Los Angeles Harbor, Upper Newport Bay, and San Diego Bay. These concentrations were used to calculate site-specific sediment-water and atmosphere-water exchange fluxes. The net sediment-water exchange of total PAH (t-PAH) was positive, indicating that sediments were a source to the overlying water column. Furthermore, the net atmosphere-water exchange (gas exchange + dry particle deposition) of t-PAH was typically positive also, indicating the water column was a net source of PAH to the surrounding atmosphere through gas exchange. However, in all cases, the magnitude of the diffusive flux of PAH out of the sediments and into the water column far exceeded input or output of PAH through air/water exchange processes. These results demonstrate the potential importance of contaminated sediments as a source of PAH to the water column in coastal waters of southern California.


Environmental Science and Pollution Research | 2015

Which coastal and marine environmental contaminants are truly emerging

Keith A. Maruya; Nathan G. Dodder; Chi-Li Tang; Wenjian Lao; David Tsukada

To better understand the past and present impact of contaminants of emerging concern (CECs) in coastal and marine ecosystems, archived samples were analyzed for a broad suite of analytes, including pharmaceuticals and personal care products (PPCPs), flame retardants (including PBDEs), perfluorinated compounds (PFCs), and current-use pesticides. Surface sediment, mussels (Mytilus spp.) and sediment core samples collected from the California (USA) coast were obtained from environmental specimen banks. Selected CECs were detected in recent surface sediments, with nonylphenol (4-NP), its mono- and di-ethoxylates (NP1EO and NP2EO), triclocarban, and pyrethroid insecticides in the greatest abundance. Alkylphenols, triclocarban, and triclosan were present in sediment core segments from the 1970s, as well as in Mytilus tissue collected during the 1990s. Increasing concentrations of some CECs (e.g., miconazole, triclosan) were observed in the surface layers (ca. 2007) of a sediment core, in contrast to peak concentrations of 4-NP and triclocarban corresponding to input during the 1970s, and an apparent peak input for PBDEs during the 1990s. These results suggest that chemicals sometimes referred to as “emerging” (e.g., alkylphenols, triclocarban) have been present in the aquatic environment for several decades and are decreasing in concentration, whereas others (e.g., miconazole, triclosan) are increasing.


Chemosphere | 2015

A passive sampler based on solid phase microextraction (SPME) for sediment-associated organic pollutants: Comparing freely-dissolved concentration with bioaccumulation

Keith A. Maruya; Wenjian Lao; David Tsukada; Dario W. Diehl

The elevated occurrence of hydrophobic organic chemicals (HOCs) such as polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCBs) and legacy organchlorine pesticides (e.g. chlordane and DDT) in estuarine sediments continues to poses challenges for maintaining the health of aquatic ecosystems. Current efforts to develop and apply protective, science-based sediment quality regulations for impaired waterbodies are hampered by non-concordance between model predictions and measured bioaccumulation and toxicity. A passive sampler incorporating commercially available solid phase microextraction (SPME) fibers was employed in lab and field studies to measure the freely dissolved concentration of target HOCs (Cfree) and determine its suitability as a proxy for bioaccumulation. SPME deduced Cfree for organochlorines was highly correlated with tissue concentrations (Cb) of Macoma and Nereis spp. co-exposed in laboratory microcosms containing both spiked and naturally contaminated sediments. This positive association was also observed in situ for endemic bivalves, where SPME samplers were deployed for up to 1 month at an estuarine field site. The concordance between Cb and Cfree for PAH was more variable, in part due to likely biotransformation by model invertebrates. These results indicate that SPME passive samplers can serve as a proxy for bioaccumulation of sediment-associated organochlorines in both lab and field studies, reducing the uncertainty associated with model predictions that do not adequately account for differential bioavailability.


Analytical Chemistry | 2012

A Two-Component Mass Balance Model for Calibration of Solid-Phase Microextraction Fibers for Pyrethroids in Seawater

Wenjian Lao; Keith A. Maruya; David Tsukada

Determination of the analyte-specific distribution coefficient between the aqueous and sorbing phases is required for estimation of the aqueous-phase concentration of the analyte of interest using polymeric materials. Poly(dimethylsiloxane)-coated solid-phase microextration (PDMS-SPME) fiber-water partition coefficient (K(f)) values for eight common-use pyrethroids were determined using a two-compartment mass balance model and parameters determined in experimental seawater microcosms. Mass balance, epimerization, and aqueous-phase degradation (i.e., hydrolysis) were characterized using gas chromatography-negative chemical ionization mass spectrometry to facilitate K(f) estimation. Of the eight pyrethroids, only bifenthrin exhibited increasing sorption on the SPME fiber over the entire time-series exposure, indicating that its K(f) value could be estimated through a stable-compound model. The remaining pyrethroids were found to be unstable (half-life of <22 days), underscoring the importance of accounting for degradation in estimating K(f). The two-compartment model explained the experimental time-series data for bifenthrin (R(2) > 0.98) and the remaining unstable pyrethroids (R(2) > 0.7), leading to estimated values of log K(f) between 5.7 and 6.4, after correcting for residual dissolved organic carbon (DOC) in the experimental seawater. These K(f) values can be used to determine freely dissolved pyrethroid concentrations in the pg/L range using PDMS-SPME in fresh or seawater matrices under equilibrium conditions in laboratory or field applications.


Journal of Chromatography A | 2012

The effect of co-occurring polychlorinated biphenyls on quantitation of toxaphene in fish tissue samples by gas chromatography negative ion mass spectrometry.

Wenjian Lao; David Tsukada; Keith A. Maruya

Determinative methods based on gas chromatography-negative chemical ionization mass spectrometry (GC-NCI/MS) provide improved sensitivity and specificity for toxaphene in environmental samples, but are subject to misidentification due to oxygen reaction in the presence of polychlorinated biphenyls (PCBs). The goal of this study was to quantify the impact of co-occurring PCBs in fish tissue samples when utilizing single quadrupole instruments to implement this method. Mixtures of PCB congeners and technical toxaphene, and extracts of fish tissue with varying concentrations of PCBs were analyzed for individual congener and total toxaphene concentrations by GC-NCI/MS. The contribution of co-injected PCB 204 ranged from 23% to 88% of the total peak area for the Cl-9 toxaphene homolog quantitation ion, a contribution that increased as the ratio of technical toxaphene to PCB 204 decreased. PCB interferences in fish tissue extracts, including a standard reference material, were subtracted using a three-step procedure featuring spectral analysis of isotopic patterns for target peaks. Total toxaphene concentrations without PCB subtraction in three fish tissue samples with low, intermediate and high co-occurring PCBs were overestimated by 33, 55 and 745%, respectively, underscoring the need for practical strategies to account for PCB interferences in GC-NCI/MS based protocols. In contrast, no appreciable interference or resulting positive bias in concentrations was observed for quantitation of eight common toxaphene residue congeners.


Science of The Total Environment | 2019

An exponential model based new approach for correcting aqueous concentrations of hydrophobic organic chemicals measured by polyethylene passive samplers.

Wenjian Lao; Keith A. Maruya; David Tsukada

Although low density polyethylene (PE) passive samplers show promise for the measurement of aqueous phase hydrophobic organic chemicals (HOCs), the lack of a practical and unsophisticated approach to account for non-equilibrium exposure conditions has impeded widespread acceptance and thus application in situ. The goal of this study was to develop a streamlined approach based on an exponential model and a convection mass transfer principle for correcting aqueous concentrations for HOCs deduced by PE samplers under non-equilibrium conditions. First, uptake rate constants (k1), elimination rate constants (k2), and seawater-PE equilibrium partition coefficients (KPEWs) were determined in laboratory experiments for a diverse suite of HOCs with logKow range of 3.4-8.3. Linear relationships between log k2 and logKow, and between log KPEW and logKow were established. Second, PE samplers pre-loaded with 13C-labeled performance reference compounds (PRCs) were deployed in the ocean to determine their k2in situ. By applying boundary layer and convection mass transfer theories, ratio (C) of k2 values in field and laboratory exposures was estimated. This C value was demonstrated a constant that was only determined by water velocities and widths of PE strips. A generic equation with C and logKow as parameters was eventually established for extrapolation of non-equilibrium correction factors for the water boundary layer-controlled HOCs. Characterizing the hydrodynamic conditions indicated the sampler configuration and mooring mode should aim at sustaining laminar flow on the PE surface for optimal mass transfer. The PE estimates corrected using this novel approach possessed high accuracy and acceptable precision, and can be suited for a broad spectrum of HOCs. The presented method should facilitate routine utilization of the PE samplers.


Environmental Science & Technology | 2004

Development of a Solid-Phase Microextraction-Based Method for Sampling of Persistent Chlorinated Hydrocarbons in an Urbanized Coastal Environment

Eddy Y. Zeng; David Tsukada; Dario W. Diehl


Journal of Chromatography A | 2005

Determination of polydimethylsiloxane-seawater distribution coefficients for polychlorinated biphenyls and chlorinated pesticides by solid-phase microextraction and gas chromatography-mass spectrometry

Eddy Y. Zeng; David Tsukada; James A. Noblet; Jian Peng

Collaboration


Dive into the David Tsukada's collaboration.

Top Co-Authors

Avatar

Keith A. Maruya

Southern California Coastal Water Research Project

View shared research outputs
Top Co-Authors

Avatar

Wenjian Lao

Southern California Coastal Water Research Project

View shared research outputs
Top Co-Authors

Avatar

Eddy Y. Zeng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Dario W. Diehl

Southern California Coastal Water Research Project

View shared research outputs
Top Co-Authors

Avatar

Darrin J. Greenstein

Southern California Coastal Water Research Project

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven M. Bay

Southern California Coastal Water Research Project

View shared research outputs
Top Co-Authors

Avatar

Jian Peng

Southern California Coastal Water Research Project

View shared research outputs
Top Co-Authors

Avatar

Jimmy D. Laughlin

Southern California Coastal Water Research Project

View shared research outputs
Top Co-Authors

Avatar

Kenneth C. Schiff

Southern California Coastal Water Research Project

View shared research outputs
Researchain Logo
Decentralizing Knowledge