Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David Vállez García is active.

Publication


Featured researches published by David Vállez García.


PLOS ONE | 2012

Protecting Persistent Dynamic Oceanographic Features: Transboundary Conservation Efforts Are Needed for the Critically Endangered Balearic Shearwater

Maite Louzao; Karine Delord; David Vállez García; Amélie Boué; Henri Weimerskirch

The protection of key areas for biodiversity at sea is not as widespread as on land and research investment is necessary to identify biodiversity hotspots in the open ocean. Spatially explicit conservation measures such as the creation of representative networks of marine protected areas (MPAs) is a critical step towards the conservation and management of marine ecosystems, as well as to improve public awareness. Conservation efforts in ecologically rich and threatened ecosystems are specially needed. This is particularly urgent for the Mediterranean marine biodiversity, which includes highly mobile marine vertebrates. Here, we studied the at sea distribution of one of the most endangered Mediterranean seabird, the critically endangered Balearic shearwater Puffinus mauretanicus. Present knowledge, from vessel-based surveys, suggests that this species has a coastal distribution over the productive Iberian shelf in relation to the distribution of their main prey, small pelagic fish. We used miniaturised satellite transmitters to determine the key marine areas of the southern population of Balearic shearwaters breeding on Eivissa and spot the spatial connections between breeding and key marine areas. Our tracking study indicates that Balearic shearwaters do not only forage along the Iberian continental shelf but also in more distant marine areas along the North African coast, in particular W of Algeria, but also NE coast of Morocco. Birds recurrently visit these shelf areas at the end of the breeding season. Species distribution modelling identified chlorophyll a as the most important environmental variable in defining those oceanographic features characterizing their key habitats in the western Mediterranean. We identified persistent oceanographic features across time series available in the study area and discuss our results within the current conservation scenario in relation to the ecology of the species.


PLOS ONE | 2015

A Standardized Method for the Construction of Tracer Specific PET and SPECT Rat Brain Templates: Validation and Implementation of a Toolbox

David Vállez García; Cindy Casteels; Adam J. Schwarz; Rudi A. J. O. Dierckx; Michel Koole; Janine Doorduin

High-resolution anatomical image data in preclinical brain PET and SPECT studies is often not available, and inter-modality spatial normalization to an MRI brain template is frequently performed. However, this procedure can be challenging for tracers where substantial anatomical structures present limited tracer uptake. Therefore, we constructed and validated strain- and tracer-specific rat brain templates in Paxinos space to allow intra-modal registration. PET [18F]FDG, [11C]flumazenil, [11C]MeDAS, [11C]PK11195 and [11C]raclopride, and SPECT [99mTc]HMPAO brain scans were acquired from healthy male rats. Tracer-specific templates were constructed by averaging the scans, and by spatial normalization to a widely used MRI-based template. The added value of tracer-specific templates was evaluated by quantification of the residual error between original and realigned voxels after random misalignments of the data set. Additionally, the impact of strain differences, disease uptake patterns (focal and diffuse lesion), and the effect of image and template size on the registration errors were explored. Mean registration errors were 0.70±0.32mm for [18F]FDG (n = 25), 0.23±0.10mm for [11C]flumazenil (n = 13), 0.88±0.20 mm for [11C]MeDAS (n = 15), 0.64±0.28mm for [11C]PK11195 (n = 19), 0.34±0.15mm for [11C]raclopride (n = 6), and 0.40±0.13mm for [99mTc]HMPAO (n = 15). These values were smallest with tracer-specific templates, when compared to the use of [18F]FDG as reference template (p&0.001). Additionally, registration errors were smallest with strain-specific templates (p&0.05), and when images and templates had the same size (p≤0.001). Moreover, highest registration errors were found for the focal lesion group (p&0.005) and the diffuse lesion group (p = n.s.). In the voxel-based analysis, the reported coordinates of the focal lesion model are consistent with the stereotaxic injection procedure. The use of PET/SPECT strain- and tracer-specific templates allows accurate registration of functional rat brain data, independent of disease specific uptake patterns and with registration error below spatial resolution of the cameras. The templates and the SAMIT package will be freely available for the research community.


The Journal of Nuclear Medicine | 2016

Pharmacokinetic analysis of 11C-PBR28 in the rat model of herpes encephalitis (HSE): comparison with (R)-11C-PK11195

Andrea Parente; Paula Kopschina Feltes; David Vállez García; Jurgen W. A. Sijbesma; Cristina Maria Moriguchi Jeckel; Rudi A. J. O. Dierckx; Erik F. J. de Vries; Janine Doorduin

11C-PBR28 is a second-generation translocator protein (TSPO) tracer with characteristics supposedly superior to the most commonly used tracer for neuroinflammation, (R)-11C-PK11195. Despite its use in clinical research, no studies on the imaging properties and pharmacokinetic analysis of 11C-PBR28 in rodent models of neuroinflammation have been published yet. Therefore, this study aimed to evaluate 11C-PBR28 as a tool for detection and quantification of neuroinflammation in preclinical research and to compare its imaging properties with (R)-11C-PK11195. The herpes simplex encephalitis (HSE) model was used for induction of neuroinflammation in male Wistar rats. Six or 7 d after virus inoculation, a dynamic 11C-PBR28 or (R)-11C-PK11195 PET scan with arterial blood sampling was obtained. Pharmacokinetic modeling was performed on the PET data and analyzed using volumes of interest and a voxel-based approach. Volume-of-interest– and voxel-based analysis of 11C-PBR28 images showed overexpression of TSPO in brain regions known to be affected in the HSE rat model. 11C-PBR28 was metabolized faster than (R)-11C-PK11195, with a metabolic half-life in plasma of 5 and 21 min, respectively. Overall, 11C-PBR28 was more sensitive than (R)-11C-PK11195 in detecting neuroinflammation. The binding potential (BPND) of 11C-PBR28 was significantly higher (P < 0.05) in the medulla (176%), pons (146%), midbrain (101%), hippocampus (85%), thalamus (73%), cerebellum (54%), and hypothalamus (49%) in HSE rats than in control rats, whereas (R)-11C-PK11195 showed a higher BPND only in the medulla (32%). The BPND in control animals was not significantly different between tracers, suggesting that the nonspecific binding of both tracers is similar. 11C-PBR28 was more sensitive than (R)-11C-PK11195 in the detection of TSPO overexpression in the HSE rat model, because more brain regions with significantly increased tracer uptake could be found, irrespective of the data analysis method used. These results suggest that 11C-PBR28 should be able to detect more subtle changes in microglial activation in preclinical models of neuroinflammation.


Journal of Neurotrauma | 2016

Three Month Follow-Up of Rat Mild Traumatic Brain Injury: A Combined [18F]FDG and [11C]PK11195 Positron Emission Study

David Vállez García; Andreas Otte; Rudi A. J. O. Dierckx; Janine Doorduin

Mild traumatic brain injury (mTBI) is the most common cause of head trauma. The time course of functional pathology is not well defined, however. The purpose of this study was to evaluate the consequences of mTBI in rats over a period of 3 months by determining the presence of neuroinflammation ([11C]PK11195) and changes in brain metabolism ([18F]FDG) with positron emission tomography (PET) imaging. Male Sprague-Dawley rats were divided in mTBI (n = 8) and sham (n = 8) groups. In vivo PET imaging and behavioral tests (open field, object recognition, and Y-maze) were performed at different time points after induction of the trauma. Differences between groups in PET images were explored using volume-of-interest and voxel-based analysis. mTBI did not result in death, skull fracture, or suppression of reflexes. Weight gain was reduced (p = 0.003) in the mTBI group compared with the sham-treated group. No statistical differences were found in the behavioral tests at any time point. Volume-of-interest analysis showed neuroinflammation limited to the subacute phase (day 12) involving amygdala, globus pallidus, hypothalamus, pons, septum, striatum, and thalamus (p < 0.03, d > 1.2). Alterations in glucose metabolism were detected over the 3 month period, with increased uptake in the medulla (p < 0.04, d ≥ 1.2), and decreased uptake in the globus pallidus, striatum, and thalamus (p < 0.04, d ≤ 1.2). Similar findings were observed in the voxel-based analysis (p < 0.05 at corrected cluster level). As a consequence of the mTBI, and in the absence of apparent behavioral alterations, relative brain glucose metabolism was found altered in several brain regions, which mostly correspond with those presenting neuroinflammation in the subacute stage.


Journal of The American Society of Nephrology | 2018

Hemodialysis Induces an Acute Decline in Cerebral Blood Flow in Elderly Patients

Harmke A. Polinder-Bos; David Vállez García; Johanna Kuipers; Jan Willem Elting; Marcel J.H. Aries; Wim P. Krijnen; Henk Groen; Antoon T. M. Willemsen; Peter Jan van Laar; Fijanne Strijkert; Gert Luurtsema; Riemer H. J. A. Slart; Ralf Westerhuis; Ron T. Gansevoort; Carlo A. J. M. Gaillard; Casper F. M. Franssen

The initiation of hemodialysis is associated with an accelerated decline of cognitive function and an increased incidence of cerebrovascular accidents and white matter lesions. Investigators have hypothesized that the repetitive circulatory stress of hemodialysis induces ischemic cerebral injury, but the mechanism is unclear. We studied the acute effect of conventional hemodialysis on cerebral blood flow (CBF), measured by [15O]H2O positron emission tomography-computed tomography (PET-CT). During a single hemodialysis session, three [15O]H2O PET-CT scans were performed: before, early after the start of, and at the end of hemodialysis. We used linear mixed models to study global and regional CBF change during hemodialysis. Twelve patients aged ≥65 years (five women, seven men), with a median dialysis vintage of 46 months, completed the study. Mean (±SD) arterial BP declined from 101±11 mm Hg before hemodialysis to 93±17 mm Hg at the end of hemodialysis. From before the start to the end of hemodialysis, global CBF declined significantly by 10%±15%, from a mean of 34.5 to 30.5 ml/100g per minute (difference, -4.1 ml/100 g per minute; 95% confidence interval, -7.3 to -0.9 ml/100 g per minute; P=0.03). CBF decline (20%) was symptomatic in one patient. Regional CBF declined in all volumes of interest, including the frontal, parietal, temporal, and occipital lobes; cerebellum; and thalamus. Higher tympanic temperature, ultrafiltration volume, ultrafiltration rate, and pH significantly associated with lower CBF. Thus, conventional hemodialysis induces a significant reduction in global and regional CBF in elderly patients. Repetitive intradialytic decreases in CBF may be one mechanism by which hemodialysis induces cerebral ischemic injury.


EBioMedicine | 2016

Altered Regional Cerebral Blood Flow in Chronic Whiplash Associated Disorders

David Vállez García; Janine Doorduin; Antoon T. M. Willemsen; Rudi A. J. O. Dierckx; Andreas Otte

There is increasing evidence of central hyperexcitability in chronic whiplash-associated disorders (cWAD). However, little is known about how an apparently simple cervical spine injury can induce changes in cerebral processes. The present study was designed (1) to validate previous results showing alterations of regional cerebral blood flow (rCBF) in cWAD, (2) to test if central hyperexcitability reflects changes in rCBF upon non-painful stimulation of the neck, and (3) to verify our hypothesis that the missing link in understanding the underlying pathophysiology could be the close interaction between the neck and midbrain structures. For this purpose, alterations of rCBF were explored in a case-control study using H215O positron emission tomography, where each group was exposed to four different conditions, including rest and different levels of non-painful electrical stimulation of the neck. rCBF was found to be elevated in patients with cWAD in the posterior cingulate and precuneus, and decreased in the superior temporal, parahippocampal, and inferior frontal gyri, the thalamus and the insular cortex when compared with rCBF in healthy controls. No differences in rCBF were observed between different levels of electrical stimulation. The alterations in regions directly involved with pain perception and interoceptive processing indicate that cWAD symptoms might be the consequence of a mismatch during the integration of information in brain regions involved in pain processing.


Nuclear Medicine and Biology | 2017

Contribution of neuroinflammation to changes in [11C]flumazenil binding in the rat brain: Evaluation of the inflamed pons as reference tissue

Andrea Parente; David Vállez García; Alexandre Shoji; Isadora Lopes Alves; Bram Maas; Rolf Zijlma; Rudi Dierckx; Carlos Alberto Buchpiguel; Erik F. J. de Vries; Janine Doorduin

INTRODUCTION [11C]Flumazenil is a well-known PET tracer for GABAA receptors and is mainly used as an imaging biomarker for neuronal loss. Recently, GABAA receptors on immune cells have been investigated as target for modulation of inflammation. Since neuronal loss is often accompanied by neuroinflammation, PET imaging with [11C]flumazenil is potentially affected by infiltrating immune cells. This may also compromise the validity of using the pons as reference tissue in quantitative pharmacokinetic analysis. This study aims to evaluate whether inflammatory processes in the brain can influence [11C]flumazenil uptake and affect the outcome of pharmacokinetic modeling when the pons is used as reference tissue. METHODS The herpes simplex encephalitis (HSE) rat model is known to cause neuroinflammation in the brainstem. Dynamic [11C]flumazenil PET scans of 60-min, accompanied by arterial blood sampling and metabolite analysis, were acquired at day 6-7days post-infection of male Wistar rats (HSE, n=5 and control, n=6). Additionally, the GABAA receptor was saturated by injection of unlabeled flumazenil prior to the tracer injection in 4 rats per group. PET data were analyzed by pharmacokinetic modeling. RESULTS No statistically significant differences were found in the volume of distribution (VT) or non-displaceable binding potential (BPND) between control and HSE rats in any of the brain regions. Pre-saturation with unlabeled flumazenil resulted in a statistically significant reduction in [11C]flumazenil VT in all brain regions. The BPND obtained from SRTM exhibited a good correlation to DVR - 1 values from the two-tissue compartment model, coupled with some level of underestimation. CONCLUSION Reliable quantification of [11C]flumazenil binding in rats can be obtained by pharmacokinetic analysis using the pons as a pseudo-reference tissue even in the presence of strong acute neuroinflammation.


PET and SPECT in Neurology | 2014

Whiplash, Real or Not Real? : A Review and New Concept

David Vállez García; Rudi A. J. O. Dierckx; Andreas Otte; Gert Holstege

Whiplash-associated disorder (WAD) describes a heterogeneous group of symptoms, which develops frequently after an unexpected rear-end car collision. In some of these patients, the symptoms persist for years. There is an ongoing scientific debate about the existence of tissue injury to support this disorder, due to the lack of findings with current diagnostic techniques and the prevalence of emotional traits as risk factors. The purpose of this chapter is to (1) overview the scientific data regarding the presence of an injury mechanism as a consequence of the whiplash trauma, (2) remark the unexpectedness of the accident as essential, and (3) present a new concept according to which WAD symptoms are the result of a mismatch between aberrant information from the cervical spinal cord and the information from the vestibular and visual systems, all of which are integrated in the mesencephalic periaqueductal gray and adjoining regions.


PET and SPECT in Neurology | 2014

Traumatic Brain Injury: Nuclear Medicine Neuroimaging

Carlos A. Sánchez-Catasús; David Vállez García; Eloísa Le Riverend Morales; Reinaldo Galvizu Sánchez; Rudi A. J. O. Dierckx

This chapter provides an up-to-date review of nuclear medicine neuroimaging in traumatic brain injury (TBI). 18F-FDG PET will remain a valuable tool in researching complex mechanisms associated with early metabolic dysfunction in TBI. Although evidence-based imaging studies are needed, 18F-FDG PET in the TBI acute phase appeared to be more useful in those patients in whom structural neuroimages fail to show abnormalities explaining their neurological state. 15O2-PET is also a solid technique for research in acute TBI, but in contrast to 18F-FDG PET it is not widely available due to its high cost. In the chronic TBI phase, most 18F-FDG PET studies converge to identify a diffuse cortical–subcortical hypometabolism involving key regions for cognitive function. Recent studies suggest the usefulness of 18F-FDG PET for the evaluation of therapeutic interventions in chronic TBI patients with cognitive deficits. In recent years, interest in studying cell-specific processes is growing. The use of radioligands as markers of neuroinflammation could become attractive for detecting secondary damage and serve for the evaluation of different therapeutic approaches. SPECT advances also make this technique a valid alternative for the study of TBI.


Journal of Cerebral Blood Flow and Metabolism | 2017

Evaluation of exercise-induced modulation of glial activation and dopaminergic damage in a rat model of Parkinson’s disease using [11C]PBR28 and [18F]FDOPA PET:

Caroline C. Real; Janine Doorduin; Paula Kopschina Feltes; David Vállez García; Daniele de Paula Faria; Luiz R.G. Britto; Erik F. J. de Vries

Evidence suggests that exercise can modulate neuroinflammation and neuronal damage. We evaluated if such effects of exercise can be detected with positron emission tomography (PET) in a rat model of Parkinson’s disease (PD). Rats were unilaterally injected in the striatum with 6-hydroxydopamine (PD rats) or saline (controls) and either remained sedentary (SED) or were forced to exercise three times per week for 40 min (EX). Motor and cognitive functions were evaluated by the open field, novel object recognition, and cylinder tests. At baseline, day 10 and 30, glial activation and dopamine synthesis were assessed by [11C]PBR28 and [18F]FDOPA PET, respectively. PET data were confirmed by immunohistochemical analysis of microglial (Iba-1) / astrocyte (GFAP) activation and tyrosine hydroxylase (TH). [11C]PBR28 PET showed increased glial activation in striatum and hippocampus of PD rats at day 10, which had resolved at day 30. Exercise completely suppressed glial activation. Imaging results correlated well with post-mortem Iba-1 staining, but not with GFAP staining. [18F]FDOPA PET, TH staining and behavioral tests indicate that 6-OHDA caused damage to dopaminergic neurons, which was partially prevented by exercise. These results show that exercise can modulate toxin-induced glial activation and neuronal damage, which can be monitored noninvasively by PET.

Collaboration


Dive into the David Vállez García's collaboration.

Top Co-Authors

Avatar

Janine Doorduin

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Rudi A. J. O. Dierckx

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Erik F. J. de Vries

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Rudi Dierckx

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Ronald Boellaard

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Andrea Parente

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Rudi Dierckx

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Antoon T. M. Willemsen

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Jurgen W. A. Sijbesma

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge