Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David Van Den Berg is active.

Publication


Featured researches published by David Van Den Berg.


Cancer Cell | 2010

Identification of a CpG Island Methylator Phenotype that Defines a Distinct Subgroup of Glioma

Houtan Noushmehr; Daniel J. Weisenberger; Kristin Diefes; Heidi S. Phillips; Kanan Pujara; Benjamin P. Berman; Fei Pan; Christopher E. Pelloski; Erik P. Sulman; Krishna P. Bhat; Roel G.W. Verhaak; Katherine A. Hoadley; D. Neil Hayes; Charles M. Perou; Heather K. Schmidt; Li Ding; Richard Wilson; David Van Den Berg; Hui Shen; Henrik Bengtsson; Pierre Neuvial; Leslie Cope; Jonathan D. Buckley; James G. Herman; Stephen B. Baylin; Peter W. Laird; Kenneth D. Aldape

We have profiled promoter DNA methylation alterations in 272 glioblastoma tumors in the context of The Cancer Genome Atlas (TCGA). We found that a distinct subset of samples displays concerted hypermethylation at a large number of loci, indicating the existence of a glioma-CpG island methylator phenotype (G-CIMP). We validated G-CIMP in a set of non-TCGA glioblastomas and low-grade gliomas. G-CIMP tumors belong to the proneural subgroup, are more prevalent among lower-grade gliomas, display distinct copy-number alterations, and are tightly associated with IDH1 somatic mutations. Patients with G-CIMP tumors are younger at the time of diagnosis and experience significantly improved outcome. These findings identify G-CIMP as a distinct subset of human gliomas on molecular and clinical grounds.


Nature Genetics | 2011

Meta-analysis of genome-wide association studies of asthma in ethnically diverse North American populations

Dara G. Torgerson; Elizabeth J. Ampleford; Grace Y. Chiu; W. James Gauderman; Christopher R. Gignoux; Penelope E. Graves; Blanca E. Himes; A. Levin; Rasika A. Mathias; Dana B. Hancock; James W. Baurley; Celeste Eng; Debra A. Stern; Juan C. Celedón; Nicholas Rafaels; Daniel Capurso; David V. Conti; Lindsey A. Roth; Manuel Soto-Quiros; Alkis Togias; Xingnan Li; Rachel A. Myers; Isabelle Romieu; David Van Den Berg; Donglei Hu; Nadia N. Hansel; Ryan D. Hernandez; Elliott Israel; Muhammad T. Salam; Joshua M Galanter

Asthma is a common disease with a complex risk architecture including both genetic and environmental factors. We performed a meta-analysis of North American genome-wide association studies of asthma in 5,416 individuals with asthma (cases) including individuals of European American, African American or African Caribbean, and Latino ancestry, with replication in an additional 12,649 individuals from the same ethnic groups. We identified five susceptibility loci. Four were at previously reported loci on 17q21, near IL1RL1, TSLP and IL33, but we report for the first time, to our knowledge, that these loci are associated with asthma risk in three ethnic groups. In addition, we identified a new asthma susceptibility locus at PYHIN1, with the association being specific to individuals of African descent (P = 3.9 × 10−9). These results suggest that some asthma susceptibility loci are robust to differences in ancestry when sufficiently large samples sizes are investigated, and that ancestry-specific associations also contribute to the complex genetic architecture of asthma.


Nature Genetics | 2012

Regions of focal DNA hypermethylation and long-range hypomethylation in colorectal cancer coincide with nuclear lamina-associated domains

Benjamin P. Berman; Daniel J. Weisenberger; Joseph F Aman; Toshinori Hinoue; Zachary Ramjan; Yaping Liu; Houtan Noushmehr; Christopher P.E. Lange; Cornelis M. van Dijk; Rob A. E. M. Tollenaar; David Van Den Berg; Peter W. Laird

Extensive changes in DNA methylation are common in cancer and may contribute to oncogenesis through transcriptional silencing of tumor-suppressor genes. Genome-scale studies have yielded important insights into these changes but have focused on CpG islands or gene promoters. We used whole-genome bisulfite sequencing (bisulfite-seq) to comprehensively profile a primary human colorectal tumor and adjacent normal colon tissue at single-basepair resolution. Regions of focal hypermethylation in the tumor were located primarily at CpG islands and were concentrated within regions of long-range (>100 kb) hypomethylation. These hypomethylated domains covered nearly half of the genome and coincided with late replication and attachment to the nuclear lamina in human cell lines. We confirmed the confluence of hypermethylation and hypomethylation within these domains in 25 diverse colorectal tumors and matched adjacent tissue. We propose that widespread DNA methylation changes in cancer are linked to silencing programs orchestrated by the three-dimensional organization of chromatin within the nucleus.


Nature Genetics | 2009

A genome-wide association study identifies a new ovarian cancer susceptibility locus on 9p22.2

Honglin Song; Susan J. Ramus; Jonathan Tyrer; Kelly L. Bolton; Aleksandra Gentry-Maharaj; Eva Wozniak; Hoda Anton-Culver; Jenny Chang-Claude; Daniel W. Cramer; Richard A. DiCioccio; Thilo Dörk; Ellen L. Goode; Marc T. Goodman; Joellen M. Schildkraut; Thomas A. Sellers; Laura Baglietto; Matthias W. Beckmann; Jonathan Beesley; Jan Blaakær; Michael E. Carney; Stephen J. Chanock; Zhihua Chen; Julie M. Cunningham; Ed Dicks; Jennifer A. Doherty; Matthias Dürst; Arif B. Ekici; David Fenstermacher; Brooke L. Fridley; Graham G. Giles

Epithelial ovarian cancer has a major heritable component, but the known susceptibility genes explain less than half the excess familial risk. We performed a genome-wide association study (GWAS) to identify common ovarian cancer susceptibility alleles. We evaluated 507,094 SNPs genotyped in 1,817 cases and 2,353 controls from the UK and ∼2 million imputed SNPs. We genotyped the 22,790 top ranked SNPs in 4,274 cases and 4,809 controls of European ancestry from Europe, USA and Australia. We identified 12 SNPs at 9p22 associated with disease risk (P < 10−8). The most significant SNP (rs3814113; P = 2.5 × 10−17) was genotyped in a further 2,670 ovarian cancer cases and 4,668 controls, confirming its association (combined data odds ratio (OR) = 0.82, 95% confidence interval (CI) 0.79–0.86, Ptrend = 5.1 × 10−19). The association differs by histological subtype, being strongest for serous ovarian cancers (OR 0.77, 95% CI 0.73–0.81, Ptrend = 4.1 × 10−21).


Nature Genetics | 2011

Genome-wide association study of prostate cancer in men of African ancestry identifies a susceptibility locus at 17q21

Christopher A. Haiman; Gary K. Chen; William J. Blot; Sara S. Strom; Sonja I. Berndt; Rick A. Kittles; Benjamin A. Rybicki; William B. Isaacs; Sue A. Ingles; Janet L. Stanford; W. Ryan Diver; John S. Witte; Ann W. Hsing; Barbara Nemesure; Timothy R. Rebbeck; Kathleen A. Cooney; Jianfeng Xu; Adam S. Kibel; Jennifer J. Hu; Esther M. John; Serigne M. Gueye; Stephen Watya; Lisa B. Signorello; Richard B. Hayes; Zhaoming Wang; Edward D. Yeboah; Yao Tettey; Qiuyin Cai; Suzanne Kolb; Elaine A. Ostrander

In search of common risk alleles for prostate cancer that could contribute to high rates of the disease in men of African ancestry, we conducted a genome-wide association study, with 1,047,986 SNP markers examined in 3,425 African-Americans with prostate cancer (cases) and 3,290 African-American male controls. We followed up the most significant 17 new associations from stage 1 in 1,844 cases and 3,269 controls of African ancestry. We identified a new risk variant on chromosome 17q21 (rs7210100, odds ratio per allele = 1.51, P = 3.4 × 10−13). The frequency of the risk allele is ∼5% in men of African descent, whereas it is rare in other populations (<1%). Further studies are needed to investigate the biological contribution of this allele to prostate cancer risk. These findings emphasize the importance of conducting genome-wide association studies in diverse populations.


Nucleic Acids Research | 2013

Low-level processing of Illumina Infinium DNA Methylation BeadArrays.

Timothy J. Triche; Daniel J. Weisenberger; David Van Den Berg; Peter W. Laird; Kimberly D. Siegmund

We propose a novel approach to background correction for Infinium HumanMethylation data to account for technical variation in background fluorescence signal. Our approach capitalizes on a new use for the Infinium I design bead types to measure non-specific fluorescence in the colour channel opposite of their design (Cy3/Cy5). This provides tens of thousands of features for measuring background instead of the much smaller number of negative control probes on the platforms (n = 32 for HumanMethylation27 and n = 614 for HumanMethylation450, respectively). We compare the performance of our methods with existing approaches, using technical replicates of both mixture samples and biological samples, and demonstrate that within- and between-platform artefacts can be substantially reduced, with concomitant improvement in sensitivity, by the proposed methods.


Human Molecular Genetics | 2008

Nicotinic acetylcholine receptor β2 subunit gene implicated in a systems-based candidate gene study of smoking cessation

David V. Conti; Won Jun Lee; Dalin Li; Jinghua Liu; David Van Den Berg; Paul D. Thomas; Andrew W. Bergen; Gary E. Swan; Rachel F. Tyndale; Neal L. Benowitz; Caryn Lerman

Although the efficacy of pharmacotherapy for tobacco dependence has been previously demonstrated, there is substantial variability among individuals in treatment response. We performed a systems-based candidate gene study of 1295 single nucleotide polymorphisms (SNPs) in 58 genes within the neuronal nicotinic receptor and dopamine systems to investigate their role in smoking cessation in a bupropion placebo-controlled randomized clinical trial. Putative functional variants were supplemented with tagSNPs within each gene. We used global tests of main effects and treatment interactions, adjusting the P-values for multiple correlated tests. An SNP (rs2072661) in the 3′ UTR region of the β2 nicotinic acetylcholine receptor subunit (CHRNB2) has an impact on abstinence rates at the end of treatment (adjusted P = 0.01) and after a 6-month follow-up period (adjusted P = 0.0002). This latter P-value is also significant with adjustment for the number of genes tested. Independent of treatment at 6-month follow-up, individuals carrying the minor allele have substantially decreased the odds of quitting (OR = 0.31; 95% CI 0.18–0.55). Effect of estimates indicate that the treatment is more effective for individuals with the wild-type (OR = 2.14, 95% CI 1.20–3.81) compared with individuals carrying the minor allele (OR = 0.83, 95% CI 0.32–2.19), although this difference is only suggestive (P = 0.10). Furthermore, this SNP demonstrated a role in the time to relapse (P = 0.0002) and an impact on withdrawal symptoms at target quit date (TQD) (P = 0.0009). Overall, while our results indicate strong evidence for CHRNB2 in ability to quit smoking, these results require replication in an independent sample.


American Journal of Human Genetics | 2001

A Genome Screen of Families with Multiple Cases of Prostate Cancer: Evidence of Genetic Heterogeneity

Chih-Lin Hsieh; Ingrid Oakley-Girvan; Raymond R. Balise; Jerry Halpern; Richard P. Gallagher; Anna H. Wu; Laurence N. Kolonel; Laura E. O'brien; Iping G. Lin; David Van Den Berg; Chong-Ze Teh; Dee W. West; Alice S. Whittemore

We conducted a genomewide screen for prostate cancer-susceptibility genes on the basis of data from 98 families from the United States and Canada that had three or more verified diagnoses of prostate cancer among first- and second-degree relatives. We found a statistically significant excess of markers for which affected relatives exhibited modest amounts of excess allele-sharing; however, no single chromosomal region contained markers with excess allele-sharing of sufficient magnitude to indicate unequivocal evidence of linkage. Positive linkage signals of nominal statistical significance were found in two regions (5p-q and 12p) that have been identified as weakly positive in other data sets and in region 19p, which has not been identified previously. All these signals were considerably stronger for analyses restricted to families with mean age at onset below the median than for analyses of families with mean age at onset above the median. The data provided little support for any of the putative prostate cancer-susceptibility genes identified in other linkage studies.


Breast Cancer Research | 2002

Genetic determinants of mammographic density

Christopher A. Haiman; Leslie Bernstein; David Van Den Berg; Sue A. Ingles; Martine Salane; Giske Ursin

BackgroundChanges in breast density are highly correlated with steroid hormone exposure.Materials and methodsIn a cross-sectional study of 396 Caucasian and African-American women, we evaluated whether polymorphisms in genes involved in steroid hormone biosynthesis and metabolism, CYP17 (T27C), COMT (Val158Met), 17HSDB1 (Ser312Gly) and 3HSDB1 (Asn367Thr), predict mammographic density. We also evaluated whether associations vary by menopausal and hormone replacement therapy status.ResultsWe found no strong consistent relationships between polymorphisms in these genes and breast density. African-American women homozygous for the Thr allele of 3HSDB1 had increased density (the absolute difference versus the Asn/Asn genotype was +19.7%; P trend = 0.02), while Caucasian homozygous women had decreased density (-5.1%; P trend = 0.04). Among premenopausal women, carriers of the Ser allele had (not significantly) greater density (versus Gly/Gly genotype: +7.1%; P trend = 0.07). In addition, among current users of hormone replacement therapy, we observed that women with the low-activity Met/Met genotype of COMT had greater breast density (versus the Val/Val genotype: +11.7%; P trend = 0.01).ConclusionAdditional large studies evaluating these and other candidate breast cancer genes will be required to determine what proportion, if any, of the interindividual differences in breast density are due to underlying genetic variation in genes involved in steroid hormone biosynthesis or metabolism.


International Journal of Cancer | 2008

Consortium analysis of 7 candidate SNPs for ovarian cancer.

Susan J. Ramus; Robert A. Vierkant; Sharon E. Johnatty; Malcolm C. Pike; David Van Den Berg; Anna H. Wu; Celeste Leigh Pearce; Usha Menon; Aleksandra Gentry-Maharaj; Simon A. Gayther; Richard A. DiCioccio; Valerie McGuire; Alice S. Whittemore; Honglin Song; Douglas F. Easton; Paul Pharoah; Montserrat Garcia-Closas; Stephen J. Chanock; Jolanta Lissowska; Louise A. Brinton; Kathryn L. Terry; Daniel W. Cramer; Shelley S. Tworoger; Susan E. Hankinson; Andrew Berchuck; Patricia G. Moorman; Joellen M. Schildkraut; Julie M. Cunningham; Mark Liebow; Susanne K. Kjaer

The Ovarian Cancer Association Consortium selected 7 candidate single nucleotide polymorphisms (SNPs), for which there is evidence from previous studies of an association with variation in ovarian cancer or breast cancer risks. The SNPs selected for analysis were F31I (rs2273535) in AURKA, N372H (rs144848) in BRCA2, rs2854344 in intron 17 of RB1, rs2811712 5′ flanking CDKN2A, rs523349 in the 3′ UTR of SRD5A2, D302H (rs1045485) in CASP8 and L10P (rs1982073) in TGFB1. Fourteen studies genotyped 4,624 invasive epithelial ovarian cancer cases and 8,113 controls of white non‐Hispanic origin. A marginally significant association was found for RB1 when all studies were included [ordinal odds ratio (OR) 0.88 (95% confidence interval (CI) 0.79–1.00) p = 0.041 and dominant OR 0.87 (95% CI 0.76–0.98) p = 0.025]; when the studies that originally suggested an association were excluded, the result was suggestive although no longer statistically significant (ordinal OR 0.92, 95% CI 0.79–1.06). This SNP has also been shown to have an association with decreased risk in breast cancer. There was a suggestion of an association for AURKA, when one study that caused significant study heterogeneity was excluded [ordinal OR 1.10 (95% CI 1.01–1.20) p = 0.027; dominant OR 1.12 (95% CI 1.01–1.24) p = 0.03]. The other 5 SNPs in BRCA2, CDKN2A, SRD5A2, CASP8 and TGFB1 showed no association with ovarian cancer risk; given the large sample size, these results can also be considered to be informative. These null results for SNPs identified from relatively large initial studies shows the importance of replicating associations by a consortium approach.

Collaboration


Dive into the David Van Den Berg's collaboration.

Top Co-Authors

Avatar

David V. Conti

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Christopher A. Haiman

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Mimi C. Yu

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian E. Henderson

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Leslie Bernstein

Beckman Research Institute

View shared research outputs
Top Co-Authors

Avatar

Malcolm C. Pike

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Giske Ursin

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Anna H. Wu

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge