David Vignolles
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David Vignolles.
Physical Review Letters | 2010
H. Shishido; A. F. Bangura; Amalia I. Coldea; S. Tonegawa; K. Hashimoto; S. Kasahara; Pmc Rourke; Hiroaki Ikeda; Takahito Terashima; Rikio Settai; Y. Onuki; David Vignolles; Cyril Proust; Baptiste Vignolle; Alix McCollam; Y. Matsuda; T. Shibauchi; Antony Carrington
Using the de Haas-van Alphen effect we have measured the evolution of the Fermi surface of BaFe2(As1-xPx){2} as a function of isoelectric substitution (As/P) for 0.41<x<1 (T{c} up to 25 K). We find that the volumes of electron and hole Fermi surfaces shrink linearly with decreasing x. This shrinking is accompanied by a strong increase in the quasiparticle effective mass as x is tuned toward the maximum T{c}. These results are not explained by simple band structure calculations, and it is likely that these trends originate from the same many-body interactions which give rise to superconductivity.
Physical Review Letters | 2008
Cyril Jaudet; David Vignolles; Alain Audouard; Julien Levallois; David LeBoeuf; Nicolas Doiron-Leyraud; Baptiste Vignolle; Marc Nardone; A. Zitouni; Ruixing Liang; D. A. Bonn; W. N. Hardy; Louis Taillefer; Cyril Proust
Cyril Jaudet, David Vignolles, ∗ Alain Audouard, Julien Levallois, D. LeBoeuf, Nicolas Doiron-Leyraud, B. Vignolle, M. Nardone, A. Zitouni, Ruixing Liang, 4 D.A. Bonn, 4 W.N. Hardy, 4 Louis Taillefer, 4 and Cyril Proust † Laboratoire National des Champs Magnétiques Pulsés (CNRS-UPS-INSA), Toulouse, France Département de physique & RQMP, Université de Sherbrooke, Sherbrooke, Canada Department of Physics and Astronomy, University of British Columbia, Vancouver, Canada Canadian Institute for Advanced Research, Toronto, Canada (Dated: May 13, 2008)
Physical Review Letters | 2009
Alain Audouard; Cyril Jaudet; David Vignolles; Ruixing Liang; D. A. Bonn; W. N. Hardy; Louis Taillefer; Cyril Proust
By improving the experimental conditions and extensive data accumulation, we have achieved very high precision in the measurements of the de Haas-van Alphen effect in the underdoped high-temperature superconductor YBa2Cu3O6.5. We find that the main oscillation, so far believed to be single frequency, is composed of three closely spaced frequencies. We attribute this to bilayer splitting and warping of a single quasi-2D Fermi surface, indicating that c axis coherence is restored at low temperature in underdoped cuprates. Our results do not support the existence of a larger frequency of the order of 1650 T reported recently in the same compound [S. E. Sebastian, Nature (London) 454, 200 (2008)].
Physical Review Letters | 2013
P. Walmsley; C. Putzke; L. Malone; I. Guillamon; David Vignolles; Cyril Proust; S. Badoux; Amalia I. Coldea; M. D. Watson; S. Kasahara; Y. Mizukami; T. Shibauchi; Y. Matsuda; Antony Carrington
We report a combined study of the specific heat and de Haas-van Alphen effect in the iron-pnictide superconductor BaFe2(As(1-x)P(x))2. Our data when combined with results for the magnetic penetration depth give compelling evidence for the existence of a quantum critical point close to x=0.30 which affects the majority of the Fermi surface by enhancing the quasiparticle mass. The results show that the sharp peak in the inverse superfluid density seen in this system results from a strong increase in the quasiparticle mass at the quantum critical point.
Nature Communications | 2015
Nicolas Doiron-Leyraud; Badoux S; René de Cotret S; Stéphane Lepault; David LeBoeuf; Francis Laliberté; E. Hassinger; B. J. Ramshaw; D. A. Bonn; W. N. Hardy; R. Liang; J.-H. Park; David Vignolles; Baptiste Vignolle; Louis Taillefer; Cyril Proust
In underdoped cuprate superconductors, the Fermi surface undergoes a reconstruction that produces a small electron pocket, but whether there is another, as yet, undetected portion to the Fermi surface is unknown. Establishing the complete topology of the Fermi surface is key to identifying the mechanism responsible for its reconstruction. Here we report evidence for a second Fermi pocket in underdoped YBa2Cu3Oy, detected as a small quantum oscillation frequency in the thermoelectric response and in the c-axis resistance. The field-angle dependence of the frequency shows that it is a distinct Fermi surface, and the normal-state thermopower requires it to be a hole pocket. A Fermi surface consisting of one electron pocket and two hole pockets with the measured areas and masses is consistent with a Fermi-surface reconstruction by the charge–density–wave order observed in YBa2Cu3Oy, provided other parts of the reconstructed Fermi surface are removed by a separate mechanism, possibly the pseudogap.
Physical Review Letters | 2012
C. Putzke; Amalia I. Coldea; I. Guillamon; David Vignolles; Alix McCollam; David LeBoeuf; M. D. Watson; I. I. Mazin; S. Kasahara; Takahito Terashima; T. Shibauchi; Y. Matsuda; Antony Carrington
We report a de Haas-van Alphen oscillation study of the 111 iron pnictide superconductors LiFeAs with T(c) ≈ 18 K and LiFeP with T(c) ≈ 5 K. We find that for both compounds the Fermi surface topology is in good agreement with density functional band-structure calculations and has almost nested electron and hole bands. The effective masses generally show significant enhancement, up to ~3 for LiFeP and ~5 for LiFeAs. However, one hole Fermi surface in LiFeP shows a very small enhancement, as compared with its other sheets. This difference probably results from k-dependent coupling to spin fluctuations and may be the origin of the different nodal and nodeless superconducting gap structures in LiFeP and LiFeAs, respectively.
Nature Communications | 2014
C. Putzke; P. Walmsley; J. D. Fletcher; L. Malone; David Vignolles; Cyril Proust; S. Badoux; Patrick See; Harvey E. Beere; David A. Ritchie; S. Kasahara; Y. Mizukami; T. Shibauchi; Y. Matsuda; Antony Carrington
Fluctuations around an antiferromagnetic quantum critical point (QCP) are believed to lead to unconventional superconductivity and in some cases to high-temperature superconductivity. However, the exact mechanism by which this occurs remains poorly understood. The iron-pnictide superconductor BaFe2(As1−xPx)2 is perhaps the clearest example to date of a high-temperature quantum critical superconductor, and so it is a particularly suitable system to study how the quantum critical fluctuations affect the superconducting state. Here we show that the proximity of the QCP yields unexpected anomalies in the superconducting critical fields. We find that both the lower and upper critical fields do not follow the behaviour, predicted by conventional theory, resulting from the observed mass enhancement near the QCP. Our results imply that the energy of superconducting vortices is enhanced, possibly due to a microscopic mixing of antiferromagnetism and superconductivity, suggesting that a highly unusual vortex state is realized in quantum critical superconductors.
Physical Review B | 2010
W. Knafo; D. Aoki; David Vignolles; Baptiste Vignolle; Y. Klein; C. Jaudet; A. Villaume; Cyril Proust; J. Flouquet
A study of the antiferromagnet
Cryogenics | 2001
Marc Nardone; Alain Audouard; David Vignolles; L. Brossard
{\text{CeRh}}_{2}{\text{Si}}_{2}
Jetp Letters | 2008
A. P. Orlov; Yu. I. Latyshev; David Vignolles; P. Monceau
by torque, magnetostriction, and transport in pulsed magnetic fields up to 50 T and by thermal expansion in static fields up to 13 T is presented. The magnetic field temperature phase diagram of