Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David W. Christianson is active.

Publication


Featured researches published by David W. Christianson.


Nature | 2012

HDAC8 mutations in Cornelia de Lange syndrome affect the cohesin acetylation cycle.

Matthew A. Deardorff; Masashige Bando; Ryuichiro Nakato; Erwan Watrin; Takehiko Itoh; Masashi Minamino; Katsuya Saitoh; Makiko Komata; Yuki Katou; Dinah Clark; Kathryn E. Cole; Elfride De Baere; Christophe Decroos; Nataliya Di Donato; Sarah Ernst; Lauren J. Francey; Yolanda Gyftodimou; Kyotaro Hirashima; Melanie Hullings; Yuuichi Ishikawa; Christian Jaulin; Maninder Kaur; Tohru Kiyono; Patrick M. Lombardi; Laura Magnaghi-Jaulin; Geert Mortier; Naohito Nozaki; Michael B. Petersen; Hiroyuki Seimiya; Victoria M. Siu

Cornelia de Lange syndrome (CdLS) is a dominantly inherited congenital malformation disorder, caused by mutations in the cohesin-loading protein NIPBL for nearly 60% of individuals with classical CdLS, and by mutations in the core cohesin components SMC1A (∼5%) and SMC3 (<1%) for a smaller fraction of probands. In humans, the multisubunit complex cohesin is made up of SMC1, SMC3, RAD21 and a STAG protein. These form a ring structure that is proposed to encircle sister chromatids to mediate sister chromatid cohesion and also has key roles in gene regulation. SMC3 is acetylated during S-phase to establish cohesiveness of chromatin-loaded cohesin, and in yeast, the class I histone deacetylase Hos1 deacetylates SMC3 during anaphase. Here we identify HDAC8 as the vertebrate SMC3 deacetylase, as well as loss-of-function HDAC8 mutations in six CdLS probands. Loss of HDAC8 activity results in increased SMC3 acetylation and inefficient dissolution of the ‘used’ cohesin complex released from chromatin in both prophase and anaphase. SMC3 with retained acetylation is loaded onto chromatin, and chromatin immunoprecipitation sequencing analysis demonstrates decreased occupancy of cohesin localization sites that results in a consistent pattern of altered transcription seen in CdLS cell lines with either NIPBL or HDAC8 mutations.


Journal of Molecular Biology | 1990

Hydrogen bond stereochemistry in protein structure and function.

Joseph A. Ippolito; Richard S. Alexander; David W. Christianson

Fifty high resolution protein structures from the Brookhaven Protein Data Bank have been analyzed for recurring motifs in hydrogen bond stereochemistry. Although an exhaustive analysis of hydrogen bond statistics has been presented by Baker & Hubbard, a detailed stereochemical analysis of classical donor (N-H, O-H, or S-H) and acceptor (N:, O:, or S:) structure within proteins is lacking. Here, we describe the preferential hydrogen bond stereochemistry for the side-chains of glutamate and aspartate (carboxylate), glutamine and asparagine (carboxamide), arginine (guanidinium), histidine (imidazole/imidazolium), tryptophan (indole), tyrosine (phenolic hydroxyl), lysine (ammonium), serine and threonine (alkyl hydroxyl), cysteine (thiol), methionine (thioether) and cystine (disulfide). Preferential hydrogen bond stereochemistry is governed by (1) the electronic configuration of acceptor atoms, (2) the steric accessibility of donor atoms and (3) the conformation of amino acid side-chains. Applications of hydrogen bond stereochemistry are useful in the interpretation of protein structure, function and stability. Additionally, this stereochemistry is a prerequisite to the interpretation of protein-other molecule recognition and biological catalysis.


Circulation Research | 2008

Endothelial Arginase II A Novel Target for the Treatment of Atherosclerosis

Sungwoo Ryoo; Gaurav Gupta; Alexandre Benjo; Hyun Kyo Lim; Andre Camara; Gautam Sikka; Hyun Kyung Lim; Jayson Sohi; Lakshmi Santhanam; Kevin G. Soucy; Eric C. Tuday; Ezra Baraban; Monica Ilies; Gary Gerstenblith; Daniel Nyhan; Artin A. Shoukas; David W. Christianson; N J Alp; Hunter C. Champion; David Huso; Dan E. Berkowitz

Oxidized low-density lipoproteins increase arginase activity and reciprocally decrease endothelial NO in human aortic endothelial cells. Here, we demonstrate that vascular endothelial arginase activity is increased in atherogenic-prone apolipoprotein E–null (ApoE−/−) and wild-type mice fed a high cholesterol diet. In ApoE−/− mice, selective arginase II inhibition or deletion of the arginase II gene (Arg II−/− mice) prevents high-cholesterol diet–dependent decreases in vascular NO production, decreases endothelial reactive oxygen species production, restores endothelial function, and prevents oxidized low-density lipoprotein–dependent increases in vascular stiffness. Furthermore, arginase inhibition significantly decreases plaque burden. These data indicate that arginase II plays a critical role in the pathophysiology of cholesterol-mediated endothelial dysfunction and represents a novel target for therapy in atherosclerosis.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Bornyl diphosphate synthase: Structure and strategy for carbocation manipulation by a terpenoid cyclase

Douglas A. Whittington; Mitchell L. Wise; Marek Urbansky; Robert M. Coates; Rodney Croteau; David W. Christianson

The x-ray crystal structure of dimeric (+)-bornyl diphosphate synthase, a metal-requiring monoterpene cyclase from Salvia officinalis, is reported at 2.0-Å resolution. Each monomer contains two α-helical domains: the C-terminal domain catalyzes the cyclization of geranyl diphosphate, orienting and stabilizing multiple reactive carbocation intermediates; the N-terminal domain has no clearly defined function, although its N terminus caps the active site in the C-terminal domain during catalysis. Structures of complexes with aza analogues of substrate and carbocation intermediates, as well as complexes with pyrophosphate and bornyl diphosphate, provide “snapshots” of the terpene cyclization cascade.


Current Opinion in Chemical Biology | 2008

Unearthing the roots of the terpenome

David W. Christianson

Although terpenoid synthases catalyze the most complex reactions in biology, these enzymes appear to play little role in the chemistry of catalysis other than to trigger the ionization and chaperone the conformation of flexible isoprenoid substrates and carbocation intermediates through multistep reaction cascades. Fidelity and promiscuity in this chemistry (whether a terpenoid synthase generates one or several products), depends on the permissiveness of the active site template in chaperoning each step of an isoprenoid coupling or cyclization reaction. Structure-guided mutagenesis studies of terpenoid synthases such as farnesyl diphosphate synthase, 5-epi-aristolochene synthase, and gamma-humulene synthase suggest that the vast diversity of terpenoid natural products is rooted in the facile evolution of alpha-helical folds shared by terpenoid synthases in all forms of life.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Structure of trichodiene synthase from Fusarium sporotrichioides provides mechanistic inferences on the terpene cyclization cascade

Michael J. Rynkiewicz; David E. Cane; David W. Christianson

The x-ray crystal structure of recombinant trichodiene synthase from Fusarium sporotrichioides has been determined to 2.5-Å resolution, both unliganded and complexed with inorganic pyrophosphate. This reaction product coordinates to three Mg2+ ions near the mouth of the active site cleft. A comparison of the liganded and unliganded structures reveals a ligand-induced conformational change that closes the mouth of the active site cleft. Binding of the substrate farnesyl diphosphate similarly may trigger this conformational change, which would facilitate catalysis by protecting reactive carbocationic intermediates in the cyclization cascade. Trichodiene synthase also shares significant structural similarity with other sesquiterpene synthases despite a lack of significant sequence identity. This similarity indicates divergence from a common ancestor early in the evolution of terpene biosynthesis.


Nature | 2011

Taxadiene synthase structure and evolution of modular architecture in terpene biosynthesis.

Mustafa Köksal; Yinghua Jin; Robert M. Coates; Rodney Croteau; David W. Christianson

With more than 55,000 members identified so far in all forms of life, the family of terpene or terpenoid natural products represents the epitome of molecular biodiversity. A well-known and important member of this family is the polycyclic diterpenoid Taxol (paclitaxel), which promotes tubulin polymerization and shows remarkable efficacy in cancer chemotherapy. The first committed step of Taxol biosynthesis in the Pacific yew (Taxus brevifolia) is the cyclization of the linear isoprenoid substrate geranylgeranyl diphosphate (GGPP) to form taxa-4(5),11(12)diene, which is catalysed by taxadiene synthase. The full-length form of this diterpene cyclase contains 862 residues, but a roughly 80-residue amino-terminal transit sequence is cleaved on maturation in plastids. We now report the X-ray crystal structure of a truncation variant lacking the transit sequence and an additional 27 residues at the N terminus, hereafter designated TXS. Specifically, we have determined structures of TXS complexed with 13-aza-13,14-dihydrocopalyl diphosphate (1.82 Å resolution) and 2-fluorogeranylgeranyl diphosphate (2.25 Å resolution). The TXS structure reveals a modular assembly of three α-helical domains. The carboxy-terminal catalytic domain is a class I terpenoid cyclase, which binds and activates substrate GGPP with a three-metal ion cluster. The N-terminal domain and a third ‘insertion’ domain together adopt the fold of a vestigial class II terpenoid cyclase. A class II cyclase activates the isoprenoid substrate by protonation instead of ionization, and the TXS structure reveals a definitive connection between the two distinct cyclase classes in the evolution of terpenoid biosynthesis.


Journal of Applied Physiology | 2009

Arginase inhibition restores NOS coupling and reverses endothelial dysfunction and vascular stiffness in old rats

Jae Hyung Kim; Lukasz Bugaj; Young Jun Oh; Trinity J. Bivalacqua; Sungwoo Ryoo; Kevin G. Soucy; Lakshmi Santhanam; Alanah Webb; Andre Camara; Gautam Sikka; Daniel Nyhan; Artin A. Shoukas; Monica Ilies; David W. Christianson; Hunter C. Champion; Dan E. Berkowitz

There is increasing evidence that upregulation of arginase contributes to impaired endothelial function in aging. In this study, we demonstrate that arginase upregulation leads to endothelial nitric oxide synthase (eNOS) uncoupling and that in vivo chronic inhibition of arginase restores nitroso-redox balance, improves endothelial function, and increases vascular compliance in old rats. Arginase activity in old rats was significantly increased compared with that shown in young rats. Old rats had significantly lower nitric oxide (NO) and higher superoxide (O2(-)) production than young. Acute inhibition of both NOS, with N(G)-nitro-l-arginine methyl ester, and arginase, with 2S-amino- 6-boronohexanoic acid (ABH), significantly reduced O2(-) production in old rats but not in young. In addition, the ratio of eNOS dimer to monomer in old rats was significantly decreased compared with that shown in young rats. These results suggest that eNOS was uncoupled in old rats. Although the expression of arginase 1 and eNOS was similar in young and old rats, inducible NOS (iNOS) was significantly upregulated. Furthermore, S-nitrosylation of arginase 1 was significantly elevated in old rats. These findings support our previously published finding that iNOS nitrosylates and activates arginase 1 (Santhanam et al., Circ Res 101: 692-702, 2007). Chronic arginase inhibition in old rats preserved eNOS dimer-to-monomer ratio and significantly reduced O2(-) production and enhanced endothelial-dependent vasorelaxation to ACh. In addition, ABH significantly reduced vascular stiffness in old rats. These data indicate that iNOS-dependent S-nitrosylation of arginase 1 and the increase in arginase activity lead to eNOS uncoupling, contributing to the nitroso-redox imbalance, endothelial dysfunction, and vascular stiffness observed in vascular aging. We suggest that arginase is a viable target for therapy in age-dependent vascular stiffness.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Crystal structure of the dimeric extracellular domain of human carbonic anhydrase XII, a bitopic membrane protein overexpressed in certain cancer tumor cells.

Douglas A. Whittington; Abdul Waheed; Barbara Ulmasov; Gul N. Shah; Jeffrey H. Grubb; William S. Sly; David W. Christianson

Overexpression of the zinc enzyme carbonic anhydrase (CA; EC 4.2.1.1) XII is observed in certain human cancers. This bitopic membrane protein contains an N-terminal extracellular catalytic domain, a membrane-spanning α-helix, and a small intracellular C-terminal domain. We have determined the three-dimensional structure of the extracellular catalytic domain of human CA XII by x-ray crystallographic methods at 1.55-Å resolution. The structure reveals a prototypical CA fold; however, two CA XII domains associate to form an isologous dimer, an observation that is confirmed by studies of the enzyme in solution. The identification of signature GXXXG and GXXXS motifs in the transmembrane sequence that facilitate helix–helix association is additionally consistent with dimeric architecture. The dimer interface is situated so that the active site clefts of each monomer are clearly exposed on one face of the dimer, and the C termini are located together on the opposite face of the dimer to facilitate membrane interaction. The amino acid composition of the active-site cleft closely resembles that of the other CA isozymes in the immediate vicinity of the catalytic zinc ion, but differs in the region of the nearby α-helical “130s segment.” The structure of the CA XII–acetazolamide complex is also reported at 1.50-Å resolution, and prospects for the design of CA XII-specific inhibitors of possible chemotherapeutic value are discussed.


Circulation Research | 2007

Inducible NO Synthase–Dependent S-Nitrosylation and Activation of Arginase1 Contribute to Age-Related Endothelial Dysfunction

Lakshmi Santhanam; Hyun Kyo Lim; Hyun Kyoung Lim; Victor Miriel; Tashalee Brown; Meet Patel; Sarit Balanson; Sungwoo Ryoo; Mirinda Anderson; Kaikobad Irani; Firdous A. Khanday; Luigi Di Costanzo; Daniel Nyhan; Joshua M. Hare; David W. Christianson; Richard J. Rivers; Artin A. Shoukas; Dan E. Berkowitz

Endothelial function is impaired in aging because of a decrease in NO bioavailability. This may be, in part, attributable to increased arginase activity, which reciprocally regulates NO synthase (NOS) by competing for the common substrate, l-arginine. However, the high Km of arginase (>1 mmol/L) compared with NOS (2 to 20 &mgr;mol/L) seemingly makes direct competition for substrate unlikely. One of the mechanisms by which NO exerts its effects is by posttranslational modification through S-nitrosylation of protein cysteines. We tested the hypothesis that arginase1 activity is modulated by this mechanism, which serves to alter its substrate affinity, allowing competition with NOS for l-arginine. We demonstrate that arginase1 activity is altered by S-nitrosylation, both in vitro and ex vivo. Furthermore, using site-directed mutagenesis we demonstrate that 2 cysteine residues (C168 and C303) are able to undergo nitrosylation. S-Nitrosylation of C303 stabilizes the arginase1 trimer and reduces its Km value 6-fold. Finally, arginase1 nitrosylation is increased (and thus its Km decreased) in blood vessels from aging rats, likely contributing to impaired NO bioavailability and endothelial dysfunction. This is mediated by inducible NOS, which is expressed in the aging endothelium. These findings suggest that S-nitrosylated arginase1 can compete with NOS for l-arginine and contribute to endothelial dysfunction in the aging cardiovascular system.

Collaboration


Dive into the David W. Christianson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luigi Di Costanzo

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yang Hai

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Douglas A. Whittington

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Mustafa Köksal

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel P. Dowling

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge