David W. Griggs
Saint Louis University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David W. Griggs.
Nature Medicine | 2013
Neil C. Henderson; Thomas D. Arnold; Yoshio Katamura; Marilyn M. Giacomini; Juan Rodríguez; Joseph H. McCarty; Antonella Pellicoro; Elisabeth Raschperger; Christer Betsholtz; Peter Ruminski; David W. Griggs; Michael J. Prinsen; Jacquelyn J. Maher; John P. Iredale; Adam Lacy-Hulbert; Ralf H. Adams; Dean Sheppard
Myofibroblasts are the major source of extracellular matrix components that accumulate during tissue fibrosis, and hepatic stellate cells (HSCs) are believed to be the major source of myofibroblasts in the liver. To date, robust systems to genetically manipulate these cells have not been developed. We report that Cre under control of the promoter of Pdgfrb (Pdgfrb-Cre) inactivates loxP-flanked genes in mouse HSCs with high efficiency. We used this system to delete the gene encoding αv integrin subunit because various αv-containing integrins have been suggested as central mediators of fibrosis in multiple organs. Such depletion protected mice from carbon tetrachloride–induced hepatic fibrosis, whereas global loss of β3, β5 or β6 integrins or conditional loss of β8 integrins in HSCs did not. We also found that Pdgfrb-Cre effectively targeted myofibroblasts in multiple organs, and depletion of the αv integrin subunit using this system was protective in other models of organ fibrosis, including pulmonary and renal fibrosis. Pharmacological blockade of αv-containing integrins by a small molecule (CWHM 12) attenuated both liver and lung fibrosis, including in a therapeutic manner. These data identify a core pathway that regulates fibrosis and suggest that pharmacological targeting of all αv integrins may have clinical utility in the treatment of patients with a broad range of fibrotic diseases.
Clinical Cancer Research | 2005
Amir Abdollahi; David W. Griggs; Heike Zieher; Alexandra Roth; Kenneth E. Lipson; Rainer Saffrich; Hermann Josef Gröne; Dennis E. Hallahan; Ralph A. Reisfeld; Juergen Debus; Andreas G. Niethammer; Peter E. Huber
The involvement of αvβ3 and αvβ5 integrins in angiogenesis and the use of integrin antagonists as effective antiangiogenic agents are documented. Radiotherapy is an important therapy option for cancer. It has been shown that ionizing radiation exerts primarily antiangiogenic effects in tumors but has also proangiogenic effects as the reaction of the tumor to protect its own vasculature from radiation damage. Here, we show that combined treatment with S247, an Arg-Gly-Glu peptidomimetic antagonist of αvβ3 integrin, and external beam radiotherapy are beneficial in local tumor therapy. We found that radiation up-regulates αvβ3 expression in endothelial cells and consecutively phosphorylates Akt, which may provide a tumor escape mechanism from radiation injury mediated by integrin survival signaling. In the presence of S247, the radiation-induced Akt phosphorylation is strongly inhibited. Our studies on endothelial cell proliferation, migration, tube formation, apoptosis, and clonogenic survival show that the radiosensitivity of endothelial cells is enhanced by the concurrent administration of the integrin antagonist. The in vitro data are successfully translated into human glioma (U87), epidermoid (A431), and prostate cancer (PC3) xenograft models growing s.c. on BALB/c-nu/nu mice. In vivo, the combination of S247 treatment and fractionated radiotherapy (5 × 2.5 Gy) leads to enhanced antiangiogenic and antitumor effects compared with either monotherapies. These results underline the importance of αvβ3 integrin when tumors protect their microvasculature from radiation-induced damage. The data also indicate that the combination of integrin antagonists and radiotherapy represents a rational approach in local cancer therapy.
Oncogene | 2005
Javier A. Menendez; Luciano Vellon; Inderjit Mehmi; Poh K. Teng; David W. Griggs; Ruth Lupu
The angiogenic inducer CYR61 is differentially overexpressed in breast cancer cells exhibiting high levels of Heregulin (HRG), a growth factor closely associated with a metastatic breast cancer phenotype. Here, we examined whether CYR61, independently of HRG, actively regulates breast cancer cell survival and chemosensitivity, and the pathways involved. Forced expression of CYR61 in HRG-negative MCF-7 cells notably upregulated the expression of its own integrin receptor αvβ3 (>200 times). Small peptidomimetic αvβ3 integrin antagonists dramatically decreased cell viability of CYR61-overexpressing MCF-7 cells, whereas control MCF-7/V remained insensitive. Mechanistically, functional blockade of αvβ3 specifically abolished CYR6-induced hyperactivation of ERK1/ERK2 MAPK, whereas the activation status of AKT did not decrease. Moreover, CYR61 overexpression rendered MCF-7 cells significantly resistant (>10-fold) to Taxol-induced cytotoxicity. Remarkably, αvβ3 inhibition converted the CYR61-induced Taxol-resistant phenotype into a hypersensitive one. Thus, the augmentation of Taxol-induced apoptotic cell death in the presence of αvβ3 antagonists demonstrated a strong synergism as verified by the terminal transferase-mediated dUTP nick-end labeling (TUNEL) assay and by flow cytometric analysis for DNA content. Indeed, functional blockade of αvβ3, similarly to the pharmacological MAPK inhibitor U0126, synergistically increased both the proportion of CYR61-overexpressing breast cancer cells in the G2 phase of the cell cycle and the appearance of sub-G1 hypodiploid (apoptotic) cells caused by Taxol. Strikingly, CYR61 overexpression impaired the accumulation of wild-type p53 following Taxol exposure, while inhibition of αvβ3 or ERK1/ERK2 MAPK signalings completely restored Taxol-induced upregulation of p53. Moreover, antisense downregulation of CYR61 expression abolished the anchorage-independent growth of breast cancer cells engineered to overexpress HRG, and significantly increased their sensitivity to Taxol. Our data provide evidence that CYR61 is sufficient to promote breast cancer cell proliferation, cell survival, and Taxol resistance through a αvβ3-activated ERK1/ERK2 MAPK signaling. The identification of a ‘CYR61-αvβ3 autocrine loop’ in the epithelial compartment of breast carcinoma strongly suggests that targeting αvβ3 may simultaneously prevent breast cancer angiogenesis, growth, and chemoresistance.
Archives of Biochemistry and Biophysics | 2008
Anne-Marie Malfait; Elizabeth C. Arner; Ruo-Hua Song; James T. Alston; Stella Markosyan; Nicholas R Staten; Zhiyong Yang; David W. Griggs; Micky D. Tortorella
Proteolytic degradation of the major cartilage macromolecules, aggrecan and type II collagen, is a key pathological event in osteoarthritis (OA). ADAMTS-4 and ADAMTS-5, the primary aggrecanases capable of cartilage aggrecan cleavage, are synthesized as latent enzymes and require prodomain removal for activity. The N-termini of the mature proteases suggest that activation involves a proprotein convertase, but the specific family member responsible for aggrecanase activation in cartilage in situ has not been identified. Here we describe purification of a proprotein convertase activity from human OA cartilage. Through biochemical characterization and the use of siRNA, PACE4 was identified as a proprotein convertase responsible for activation of aggrecanases in osteoarthritic and cytokine-stimulated cartilage. Posttranslational activation of ADAMTS-4 and ADAMTS-5 was observed in the extracellular milieu of cartilage, resulting in aggrecan degradation. These findings suggest that PACE4 represents a novel target for the development of OA therapeutics.
Arthritis & Rheumatism | 2009
Marc D. Zack; Anne-Marie Malfait; Adam P. Skepner; Matthew Yates; David W. Griggs; Troii Hall; Robert Hills; James T. Alston; Olga V. Nemirovskiy; Melissa R. Radabaugh; Joseph W. Leone; Elizabeth C. Arner; Micky D. Tortorella
OBJECTIVE Fibronectin fragments are thought to play a critical role in the initiation and progression of cartilage degradation in arthritis. In a recent study, fibronectin neoepitopes resulting from cleavage of intact fibronectin at the Ala(271)/Val(272) scissile bond, generating an approximately 30-kd fragment with the new C-terminus VRAA(271) and an approximately 50-85-kd fragment with the new N-terminus (272)VYQP, were identified in osteoarthritis (OA) cartilage. The present study was undertaken to isolate the enzymes responsible for this cleavage from human OA chondrocytes. METHODS Fibronectin-degrading activity in human OA chondrocyte-conditioned medium (OACCM) was purified using conventional chromatography. A fluorescent peptide was developed based on the fibronectin scissile bond (269)RAA downward arrowVal(272), and this peptide was used to track fibronectinase activity during purification. Western blotting with antibodies that detect the fibronectin neoepitopes VRAA(271) and (272)VYQP was used to confirm cleavage of intact fibronectin by the enzymatically active fractions. Mass spectrometry was used to identify the proteins found in the fibronectinase-enriched fractions, with further confirmation by Western blotting. In addition, a recombinant enzyme identified by mass spectrometry was tested by Western blotting and dimethylmethylene blue assay for its ability to produce fibronectin neoepitopes in OA cartilage. RESULTS Purification of OACCM by chromatography resulted in isolation of a fibronectin-degrading enzyme, and mass spectrometry identified ADAM-8 as the fibronectinase present in these preparations. Furthermore, treatment of OA cartilage with recombinant human ADAM-8 promoted cartilage catabolism. CONCLUSION The results of this study identify ADAM-8 as a fibronectinase in human OA chondrocytes. Because ADAM-8 is capable of producing the fibronectin neoepitopes VRAA(271) and (272)VYQP in human OA cartilage, this enzyme may be an important mediator of cartilage catabolism.
Antiviral Research | 2002
Paul J Hippenmeyer; Peter G. Ruminski; Joseph G. Rico; H.S.Sharon Lu; David W. Griggs
Many viruses and bacterial pathogens are capable of exploiting host cell surface integrins during their replication cycles. The ligands for many integrins contain an arginine-glycine-aspartic acid (RGD) amino acid sequence that is essential for protein-protein interaction. Human adenovirus particles contain this sequence in the penton base protein, and previous studies support a role for this RGD in integrin-dependent internalization of the virus by the cell. As synthetic peptidomimetics of RGD have been shown in other experimental systems to be antagonists of the activities of specific integrins both in vitro and in vivo, we sought to determine whether these small molecules are antagonists of adenovirus infection. Such compounds inhibited viral infection of cultured cells with similar rank order potency to that determined in assays utilizing purified extracellular matrix proteins as integrin ligands. The maximal level of inhibition achieved with the peptidomimetics was comparable to that of RGD-containing peptides, whereas no significant effects were apparent with an RGE-containing peptide. An engineered adenovirus having a mutated RGD sequence in the penton base was not susceptible to the inhibition. The results obtained with these synthetic antagonists, which have varied structures and potencies, suggest that integrins interact with adenoviral RGD in a manner similar to that of other protein ligands such as vitronectin. Furthermore, the results confirm the role of RGD in the replication cycle, and suggest peptidomimetic compounds may be useful antimicrobial agents in the treatment of a variety of diseases.
ACS Medicinal Chemistry Letters | 2014
Marvin J. Meyers; Micky D. Tortorella; Jing Xu; Limei Qin; Zhengxiang He; Xingfen Lang; Wentian Zeng; Wanwan Xu; Li Qin; Michael J. Prinsen; Francis M. Sverdrup; Christopher S. Eickhoff; David W. Griggs; Jonathan Oliva; Peter G. Ruminski; E. Jon Jacobsen; Mary Campbell; David C. Wood; Daniel E. Goldberg; Xiaorong Liu; Yongzhi Lu; Xin Lu; Zhengchao Tu; Xiaoyun Lu; Ke Ding; Xiaoping Chen
Given the threat of drug resistance, there is an acute need for new classes of antimalarial agents that act via a unique mechanism of action relative to currently used drugs. We have identified a set of druglike compounds within the Tres Cantos Anti-Malarial Set (TCAMS) which likely act via inhibition of a Plasmodium aspartic protease. Structure-activity relationship analysis and optimization of these aminohydantoins demonstrate that these compounds are potent nanomolar inhibitors of the Plasmodium aspartic proteases PM-II and PM-IV and likely one or more other Plasmodium aspartic proteases. Incorporation of a bulky group, such as a cyclohexyl group, on the aminohydantion N-3 position gives enhanced antimalarial potency while reducing inhibition of human aspartic proteases such as BACE. We have identified compound 8p (CWHM-117) as a promising lead for optimization as an antimalarial drug with a low molecular weight, modest lipophilicity, oral bioavailability, and in vivo antimalarial activity in mice.
Bioscience Reports | 2009
Troii Hall; Joseph W. Leone; Joseph F. Wiese; David W. Griggs; Lyle E. Pegg; Adele M. Pauley; Alfredo G. Tomasselli; Marc D. Zack
Members of the ADAM (a disintegrin and metalloproteinase) family of proteins possess a multidomain architecture which permits functionalities as adhesion molecules, signalling intermediates and proteolytic enzymes. ADAM8 is found on immune cells and is induced by multiple pro-inflammatory stimuli suggesting a role in inflammation. Here we describe an activation mechanism for recombinant human ADAM8 that is independent from classical PC (pro-protein convertase)-mediated activation. N-terminal sequencing revealed that, unlike other ADAMs, ADAM8 undergoes pre-processing at Glu(158), which fractures the Pro (pro-segment)-domain before terminal activation takes place to remove the putative cysteine switch (Cys(167)). ADAM8 lacking the DIS (disintegrin) and/or CR (cysteine-rich) and EGF (epidermal growth factor) domains displayed impaired ability to complete this event. Thus pre-processing of the Pro-domain is co-ordinated by DIS and CR/EGF domains. Furthermore, by placing an EK (enterokinase) recognition motif between the Pro- and catalytic domains of multiple constructs, we were able to artificially remove the pro-segment prior to pre-processing. In the absence of pre-processing of the Pro-domain a marked decrease in specific activity was observed with the autoactivated enzyme, suggesting that the Pro-domain continued to associate and inhibit active enzyme. Thus, pre-processing of the Pro-domain of human ADAM8 is important for enzyme maturation by preventing re-association of the pro-segment with the catalytic domain. Given the observed necessity of DIS and CR/EGF for pre-processing, we conclude that these domains are crucial for the proper activation and maturation of human ADAM8.
Cellular and molecular gastroenterology and hepatology | 2016
Barbara Ulmasov; Brent A. Neuschwander-Tetri; Jinping Lai; Vladimir Monastyrskiy; Trisha Bhat; Matthew P. Yates; Jonathan Oliva; Michael J. Prinsen; Peter Ruminski; David W. Griggs
Background & Aims Pancreatic stellate cells (PSCs) regulate the development of chronic pancreatitis (CP) and are activated by the cytokine transforming growth factor β (TGFB). Integrins of the αv family promote TGFB signaling in mice, probably by interacting with the Arg-Gly-Asp (RGD) sequence of the TGFB latency-associated peptide, which frees TGFB to bind its cellular receptors. However, little is known about the role of integrins in the development of CP. We investigated the effects of small-molecule integrin inhibitors in a mouse model of CP. Methods We induced CP in C57BL/6 female mice by repeated cerulein administration. An active RGD peptidomimetic compound (Center for World Health and Medicine [CWHM]-12) was delivered by continuous infusion, starting 3 days before or 5 days after cerulein administration began. Pancreata were collected and parenchymal atrophy, fibrosis, and activation of PSCs were assessed by histologic, gene, and protein expression analyses. We measured CWHM-12 effects on activation of TGFB in co-culture assays in which rat PSC cells (large T immortalized cells [LTC-14]) activate expression of a TGFB-sensitive promoter in reporter cells. Results Pancreatic tissues of mice expressed messenger RNAs encoding subunits of RGD-binding integrins. Cerulein administration increased expression of these integrins, altered pancreatic cell morphology, and induced fibrosis. The integrin inhibitor CWHM-12 decreased acinar cell atrophy and loss, and substantially reduced fibrosis, activation of PSCs, and expression of genes regulated by TGFB. CWHM-12 also reduced established fibrosis in mice and blocked activation of TGFB in cultured cells. Conclusions Based on studies of a mouse model of CP and cultured PSCs, integrins that bind RGD sequences activate PSCs and promote the development of pancreatic fibrogenesis in mice. Small-molecule antagonists of this interaction might be developed for treatment of pancreatic fibrotic diseases.
Chemical Biology & Drug Design | 2006
Srinivasan R. Nagarajan; Jane M. Meyer; Julie M. Miyashiro; V. Wayne Engleman; Sandra K. Freeman; David W. Griggs; Jon A. Klover; G. Alan Nickols
A peptidomimetic inhibitor of the integrin αvβ3 has been substantially modified to produce several new nonpeptidic antagonists. These inhibitors are simpler to synthesize and belong to new classes of scaffolds. Some of the compounds served as the initial lead for further optimization, which led to the discovery of potent and selective inhibitors of the integrin αvβ3.