Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David W. Jeffery is active.

Publication


Featured researches published by David W. Jeffery.


Journal of Agricultural and Food Chemistry | 2009

First Identification of 4-S-Glutathionyl-4-methylpentan-2-one, a Potential Precursor of 4-Mercapto-4-methylpentan-2-one, in Sauvignon Blanc Juice

Bruno Fedrizzi; Kevin H. Pardon; Mark A. Sefton; Gordon M. Elsey; David W. Jeffery

The identification of 4-S-glutathionyl-4-methylpentan-2-one (glut-4-MMP) by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) experiments in a Sauvignon Blanc juice extract is described. Synthesis of an authentic reference compound enabled confirmation of the presence of glut-4-MMP in a Sauvignon Blanc juice for the first time. The juice extract was obtained by batch-wise percolation of 6 L of juice through a sintered glass funnel packed with C18 sorbent, followed by further purification using low-pressure chromatography on C18. Analysis of the juice extract revealed a chromatographic peak with the same retention time and mass spectrum as the synthetic reference compound, and spiking experiments verified the findings. The presence of glut-4-MMP in grape juice may be related to the biosynthesis of the relevant S-cysteinyl conjugate and, subsequently, to the formation of aroma-active 4-mercapto-4-methylpentan-2-one (4-MMP). This compound has a very low reported sensory threshold (3 ng/L) in wine and is partially responsible for the aromas that are important to the quality and style of some wine varieties.


Journal of Agricultural and Food Chemistry | 2010

Analysis of precursors to wine odorant 3-mercaptohexan-1-ol using HPLC-MS/MS: Resolution and quantitation of diastereomers of 3-S-cysteinylhexan-1-ol and 3-S-glutathionylhexan-1-ol

Dimitra L. Capone; Mark A. Sefton; Yoji Hayasaka; David W. Jeffery

A method has been developed and validated for the analysis of the individual diastereomers of 3-S-cysteinylhexan-1-ol (Cys-3-MH) and 3-S-glutathionylhexan-1-ol (Glut-3-MH) extracted from grape juice and wine. The method uses stable isotope dilution analysis (SIDA) combined with solid-phase extraction (SPE) and reversed-phase high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) for quantitation. These compounds have been considered as potential precursors to the important wine odorant 3-mercaptohexan-1-ol (3-MH). This constitutes the first analytical method where (1) Glut-3-MH has been accurately quantified in grape juice and wine and (2) the individual Cys- and Glut-3-MH diastereomers were separated and quantified by a single HPLC-MS/MS method. The use of deuterium-labeled internal standards has resulted in an accurate and precise method that can achieve quantitation limits of <0.5 microg/L for the individual Cys- and Glut-3-MH diastereomers in grape juice and white wine. The method has been applied to the determination of 3-MH precursor diastereomers in various white juice and wine samples. Overall, Glut-3-MH was always more abundant than Cys-3-MH in the juices and wines examined, regardless of grape variety. Stereochemically, (S)-Glut-3-MH generally dominated over the (R)-diastereomer in the juices and wines, but there was not such a marked difference between the distribution of Cys-3-MH diastereomers. These results have important implications for understanding the formation of wine flavor, and the application of this method will allow further exploration of precursors to the varietal thiol 3-MH.


Journal of Agricultural and Food Chemistry | 2010

Synthesis of Wine Thiol Conjugates and Labeled Analogues: Fermentation of the Glutathione Conjugate of 3-Mercaptohexan-1-ol Yields the Corresponding Cysteine Conjugate and Free Thiol

Paris A. Grant-Preece; Kevin H. Pardon; Dimitra L. Capone; Antonio G. Cordente; Mark A. Sefton; David W. Jeffery; Gordon M. Elsey

Synthesis of the putative wine thiol precursor 3-S-glutathionylhexan-1-ol (Glut-3-MH) has been undertaken to provide pure reference materials for the development of HPLC-MS/MS methods for precursor quantitation in grape juice and wine, and for use in fermentation experiments. Labeled thiol conjugates were also prepared for use as internal standards. Purification and fermentation of a single diastereomer of Glut-3-MH with VIN13 (CSL1) yielded not only the (R)-enantiomer of the wine impact odorant 3-mercaptohexan-1-ol (3-MH) but also the cysteine conjugate intermediate as a single (R)-diastereomer, as determined by HPLC-MS/MS. Chiral GC-MS was used to quantify the total amount of (R)-3-MH released from the ferments, resulting in a molar conversion yield of the glutathione conjugate of about 3%. Enzymatic degradation of the single (R)-Glut-3-MH diastereomer with a gamma-glutamyltranspeptidase confirmed the stereochemical relationship to the related cysteine conjugate. This is the first demonstration that Glut-3-MH can liberate 3-MH under model fermentation conditions, where the cysteine conjugate is also formed in the process. This furthers our understanding of the nature of wine thiol precursors and opens avenues for additional studies into formation and interchange of wine thiols and their precursors.


Journal of Agricultural and Food Chemistry | 2011

Application of a modified method for 3-mercaptohexan-1-ol determination to investigate the relationship between free thiol and related conjugates in grape juice and wine.

Dimitra L. Capone; Mark A. Sefton; David W. Jeffery

A method has been developed for determining 3-mercaptohexan-1-ol (3-MH) in wine and grape juice using gas chromatography with conventional electron ionization (EI) mass spectrometry. The limit of quantitation of 40 ng/L was achieved with excellent precision using stable isotope dilution analysis (SIDA) combined with headspace solid-phase microextraction (SPME) of derivatized 3-MH. This method was used in combination with HPLC-MS/MS analysis of the individual diastereomers of 3-S-cysteinylhexan-1-ol (Cys-3-MH) and 3-S-glutathionylhexan-1-ol (Glut-3-MH), which are known precursors of the volatile thiol 3-MH. Commercial and small-lot winemaking trials were evaluated to determine the concentrations of precursors and free 3-MH at various stages of grape processing and winemaking. Five Sauvignon blanc clones were also assessed for precursors and free thiol during ripening, revealing the presence of 3-MH in the unfermented juices and a stark increase in precursor concentrations in the latter stage of ripening. Additionally, differences due to sample freezing and mode of juice preparation were revealed for the precursors, and a set of commercially available wines was analyzed to investigate the amounts of precursors and free 3-MH in Sauvignon blanc and other white wine varieties. There was seemingly no relationship between precursor concentrations in juice and 3-MH concentrations in wine. This was somewhat understandable, because the formation of precursors appears to be a dynamic process affected by a multitude of factors, beginning with grape ripening and continuing during vinification.


Journal of Agricultural and Food Chemistry | 2010

Glycosylation of smoke-derived volatile phenols in grapes as a consequence of grapevine exposure to bushfire smoke.

Yoji Hayasaka; Gayle A. Baldock; Mango Parker; Kevin H. Pardon; Cory A. Black; Markus Herderich; David W. Jeffery

The presence of glycosides of smoke-derived volatile phenols in smoke-affected grapes and the resulting wines of Chardonnay and Cabernet Sauvignon was investigated with the aid of high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). All volatile phenols studied (phenol, p-, m-, and o-cresols, methylguaiacol, syringol, and methylsyringol) could be detected as glycosylated metabolites in smoke-affected grapes in a similar fashion to that previously reported for guaiacol. These phenolic glycosides were found in smoke-affected grapes and wines at significantly elevated levels compared to those in non-smoked control grapes and wines. The extraction of these glycosides from grapes into wine was estimated to be 78% for Chardonnay and 67% for Cabernet Sauvignon. After acid hydrolysis, a large proportion of these phenolic glycosides in grapes (50%) and wine (92%) disappeared but the concentrations of volatile phenols determined by gas chromatography-mass spectrometry (GC-MS) were lower than expected. In the case of wine, the majority of the glycosides of phenol, cresols, guaiacol, and methylguaiacol were decomposed upon acid hydrolysis without releasing their respective aglycones, while syringol and methylsyringol were more effectively released.


Journal of Agricultural and Food Chemistry | 2010

Investigation into the Formation of Guaiacol Conjugates in Berries and Leaves of Grapevine Vitis vinifera L. Cv. Cabernet Sauvignon Using Stable Isotope Tracers Combined with HPLC-MS and MS/MS Analysis

Yoji Hayasaka; Gayle A. Baldock; Kevin H. Pardon; David W. Jeffery; Markus Herderich

Fermentation of grapes that had been exposed to bushfire smoke can potentially yield unpalatable, smoke-affected wine. Guaiacol and its glucoconjugate were previously found in smoke-affected grapes at an elevated concentration. To find and identify further guaiacol conjugates in smoke-affected grapes, a stable isotope feeding experiment combined with extensive HPLC-MS and MS/MS investigations was carried out. Leaves and berries of a potted grapevine were placed in contact with an aqueous mixture of d(0)- and d(3)-guaiacol for 1-2 days and collected 5 weeks later. Screening for potential guaiacol conjugates in the leaves and berries was facilitated by monitoring the unique mass spectrometric signature of an isotopic doublet separated by 3 Da. Seven different conjugates were detected in leaves and berries and were tentatively identified as mono- and diglycosides of guaiacol. Quantitative analysis demonstrated that the guaiacol conjugates were translocated between leaves and berries to a very limited extent and were also present as low-level natural compounds of untreated leaves and berries. The same guaiacol conjugates were also found at a considerably elevated concentration in leaves and berries obtained from grapevines exposed to bushfire smoke.


Journal of Agricultural and Food Chemistry | 2012

Contribution of several volatile phenols and their glycoconjugates to smoke-related sensory properties of red wine.

Mango Parker; P. Osidacz; Gayle A. Baldock; Yoji Hayasaka; Cory A. Black; Kevin H. Pardon; David W. Jeffery; Geue Jp; Markus Herderich; I.L. Francis

Guaiacol and 4-methylguaiacol are well-known as contributors to the flavor of wines made from smoke-affected grapes, but there are other volatile phenols commonly found in smoke from forest fires that are also potentially important. The relationships between the concentration of a range of volatile phenols and their glycoconjugates with the sensory characteristics of wines and model wines were investigated. Modeling of the attribute ratings from a sensory descriptive analysis of smoke-affected wines with their chemical composition indicated the concentrations of guaiacol, o-cresol, m-cresol, and p-cresol were related to smoky attributes. The best-estimate odor thresholds of these compounds were determined in red wine, together with the flavor threshold of guaiacol. Guaiacol β-D-glucoside and m-cresol β-D-glucoside in model wine were found to give rise to a smoky/ashy flavor in-mouth, and the respective free volatiles were released. The study indicated that a combination of volatile phenols and their glycosides produces an undesirable smoke flavor in affected wines. The observation of flavor generation from nonvolatile glycoconjugates in-mouth has potentially important implications.


Journal of Agricultural and Food Chemistry | 2011

Effects of Transporting and Processing Sauvignon blanc Grapes on 3-Mercaptohexan-1-ol Precursor Concentrations

Dimitra L. Capone; David W. Jeffery

The effects of different processing treatments on thiol precursor concentrations have been investigated through studies involving transportation of machine-harvested Sauvignon blanc fruit and assessment of different applications of antioxidants, along with juice preparation and enzyme inhibition experiments. The influence these trials had on 3-S-cysteinylhexan-1-ol (Cys-3-MH) and 3-S-glutathionylhexan-1-ol (Glut-3-MH) concentrations in juices is discussed. Very interesting findings included the large increase in precursor concentrations after transportation, particularly for Cys-3-MH, and the limited formation of Glut-3-MH when grape proteins were precipitated during processing. The various results provided information about the ability to modulate precursor concentrations depending on the processing technique employed. Additionally, a conjugated aldehyde, which is the obvious missing link between the reaction of (E)-2-hexenal and glutathione in the formation of Glut-3-MH, has been tentatively identified for the first time. Deuterium-labeled 3-S-glutathionylhexanal (Glut-3-MHAl) was produced through the addition of labeled (E)-2-hexenal to grapes, followed by grape crushing, and detected in the juice by HPLC-MS/MS, along with the corresponding labeled Glut-3-MH.


Journal of Agricultural and Food Chemistry | 2008

Rapid Isolation of Red Wine Polymeric Polyphenols by Solid-Phase Extraction

David W. Jeffery; Meagan D. Mercurio; Markus Herderich; Yoji Hayasaka; Paul A. Smith

A rapid technique for the isolation of polymeric polyphenols from red wine has been developed and validated. A copolymer reversed-phase SPE cartridge was utilized in conjunction with predominantly organic eluents to provide three phenolic fractions from red wine without the need for sample pretreatment. The first fraction contained the bulk of the monomeric and oligomeric phenolic material, while the second and third fractions contained the polymeric polyphenolic compounds, as determined by HPLC analysis. The two polymeric polyphenolic fractions differed in their solubility and extent of pigmentation, and the differences appeared to be related to wine age. This method contrasted with other available fractionation techniques because the interfering, nonpolymeric material can be removed in a single wash fraction, while the polymeric material is separated into two distinct fractions based on their diverse physicochemical properties. It is anticipated that the rapid access to discrete polymeric fractions afforded by this method will be of benefit in furthering the understanding of red wine polymeric polyphenols.


Journal of Agricultural and Food Chemistry | 2012

Phenolic Compositions of 50 and 30 Year Sequences of Australian Red Wines: The Impact of Wine Age

Jacqui M. McRae; Rg Dambergs; Stella Kassara; Mango Parker; David W. Jeffery; Markus Herderich; Paul A. Smith

The phenolic composition of red wine impacts upon the color and mouthfeel and thus quality of the wine. Both of these characteristics differ depending on the age of a wine, with the purple of young wines changing to brick red and the puckering or aggressive astringency softening in older wines. This study investigated the color parameters, tannin concentrations and tannin composition of a 50 year series of Cabernet Sauvignon wines from a commercial label as well as 30 year series of Cabernet Sauvignon and Shiraz wines from a separate commercial label to assess the impact of wine age on phenolic composition and concentration. The wine color density in wines of 40 to 50 years old was around 5 AU compared with 16 AU of wine less than 12 months old, which correlated well with the concentration of non-bleachable pigments and pigmented polymers. Conversely, the anthocyanin concentrations in 10 year old wines were substantially lower than that of recently bottled wines (around 100 mg/L compared with 627 mg/L, respectively), adding further evidence that non-bleachable pigments including pigmented polymers play a much larger role in long-term wine color than anthocyanins. No age-related trend was observed for tannin concentration, indicating that the widely noted softer astringency of older red wines cannot necessarily be directly related to lower concentrations of soluble wine tannin and is potentially a consequence of changes in tannin structure. Wine tannins from older wines were generally larger than tannins from younger wines and showed structural changes consistent with oxidation.

Collaboration


Dive into the David W. Jeffery's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dimitra L. Capone

Australian Wine Research Institute

View shared research outputs
Top Co-Authors

Avatar

Markus Herderich

Australian Wine Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin H. Pardon

Australian Wine Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark A. Sefton

Australian Wine Research Institute

View shared research outputs
Top Co-Authors

Avatar

Paul A. Smith

Australian Wine Research Institute

View shared research outputs
Top Co-Authors

Avatar

Mango Parker

Australian Wine Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge