Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David W. Odee.
Agroforestry Systems | 2010
Mary Nyawira Muchane; Bashir Jama; C. O. Othieno; Robert Okalebo; David W. Odee; Joseph Machua; Jan Jansa
A field study was carried out on a six-year-old on-farm field trial during long-rains season (April–August) 2003 to investigate the effect of improved fallow systems and phosphorus application on arbuscular mycorrhiza fungi (AMF) symbiosis in maize. The trial comprised of maize rotated with a fast growing leguminous Crotalariagrahamiana fallow and a non-leguminous Tithonia diversifolia fallow for 3xa0years followed by continuous maize. The experiment was randomized complete block design with three cropping (continuous maize, Crotalaria fallow and Tithonia fallow) systems and two phosphorus levels (0 and 50xa0kgxa0P/ha). AMF colonization in maize roots, maize yield and macro-nutrients uptake were recorded. Phosphorus applications improved (Pxa0<xa00.05) early (<8xa0weeks old maize) AMF colonization, nutrient uptake and maize yield in improved fallow systems. Greater differences due to phosphorus application were noted in maize in Tithonia fallow than in Crotalaria fallow. Following phosphorus application, a positive relationship existed between early AMF colonization and maize yield (rxa0=xa00.38), and phosphorus and nitrogen uptake (rxa0=xa00.40 and rxa0=xa00.43, respectively), demonstrating the importance of phosphorus fertilization in enhancing low-input technologies (improved fallows systems) in phosphorus deficient and acidic soils of western Kenya.
PLOS ONE | 2016
Mark E. Olson; Renuka P. Sankaran; Jed W. Fahey; Michael A. Grusak; David W. Odee; Wasif Nouman
The moringa tree Moringa oleifera is a fast-growing, drought-resistant tree cultivated across the lowland dry tropics worldwide for its nutritious leaves. Despite its nutritious reputation, there has been no systematic survey of the variation in leaf nutritional quality across M. oleifera grown worldwide, or of the other species of the genus. To guide informed use of moringa, we surveyed protein, macro-, and micro- nutrients across 67 common garden samples of 12 Moringa taxa, including 23 samples of M. oleifera. Moringa oleifera, M. concanensis, M. stenopetala, an M. concanensis X oleifera hybrid, and M. longituba were highest in protein, with M. ruspoliana having the highest calcium levels. A protein-dry leaf mass tradeoff may preclude certain breeding possibilities, e.g. maximally high protein with large leaflets. These findings identify clear priorities and limitations for improved moringa varieties with traits such as high protein, calcium, or ease of preparation.
PLOS ONE | 2014
Joanne Russell; Peter E. Hedley; Linda Cardle; Siobhan Dancey; Jenny Morris; Allan Booth; David W. Odee; Lucy Mwaura; William Omondi; Peter Angaine; Joseph Machua; Alice Muchugi; Iain Milne; Roeland Kindt; Ramni Jamnadass; Ian K. Dawson
The development of genetic tools for non-model organisms has been hampered by cost, but advances in next-generation sequencing (NGS) have created new opportunities. In ecological research, this raises the prospect for developing molecular markers to simultaneously study important genetic processes such as gene flow in multiple non-model plant species within complex natural and anthropogenic landscapes. Here, we report the use of bar-coded multiplexed paired-end Illumina NGS for the de novo development of expressed sequence tag-derived simple sequence repeat (EST-SSR) markers at low cost for a range of 24 tree species. Each chosen tree species is important in complex tropical agroforestry systems where little is currently known about many genetic processes. An average of more than 5,000 EST-SSRs was identified for each of the 24 sequenced species, whereas prior to analysis 20 of the species had fewer than 100 nucleotide sequence citations. To make results available to potential users in a suitable format, we have developed an open-access, interactive online database, tropiTree (http://bioinf.hutton.ac.uk/tropiTree), which has a range of visualisation and search facilities, and which is a model for the efficient presentation and application of NGS data.
PLOS ONE | 2017
Diriba B. Kumssa; Edward J. M. Joy; Scott D. Young; David W. Odee; E. Louise Ander; Martin R. Broadley
Background Moringa oleifera (MO) and M. stenopetala (MS) (family Moringaceae; order Brassicales) are multipurpose tree/shrub species. They thrive under marginal environmental conditions and produce nutritious edible parts. The aim of this study was to determine the mineral composition of different parts of MO and MS growing in their natural environments and their potential role in alleviating human mineral micronutrient deficiencies (MND) in sub-Saharan Africa. Methods Edible parts of MO (n = 146) and MS (n = 50), co-occurring cereals/vegetables and soils (n = 95) underneath their canopy were sampled from localities in southern Ethiopia and Kenya. The concentrations of seven mineral elements, namely, calcium (Ca), copper (Cu), iodine (I), iron (Fe), magnesium (Mg), selenium (Se), and zinc (Zn) in edible parts and soils were determined using inductively coupled plasma-mass spectrometry. Results In Ethiopian crops, MS leaves contained the highest median concentrations of all elements except Cu and Zn, which were greater in Enset (a.k.a., false banana). In Kenya, Mo flowers and MS leaves had the highest median Se concentration of 1.56 mg kg-1 and 3.96 mg kg-1, respectively. The median concentration of Se in MS leaves was 7-fold, 10-fold, 23-fold, 117-fold and 147-fold more than that in brassica leaves, amaranth leaves, baobab fruits, sorghum grain and maize grain, respectively. The median Se concentration was 78-fold and 98-fold greater in MO seeds than in sorghum and maize grain, respectively. There was a strong relationship between soil total Se and potassium dihydrogen phosphate (KH2PO4)-extractable Se, and Se concentration in the leaves of MO and MS. Conclusion This study confirms previous studies that Moringa is a good source of several of the measured mineral nutrients, and it includes the first wide assessment of Se and I concentrations in edible parts of MO and MS grown in various localities. Increasing the consumption of MO and MS, especially the leaves as a fresh vegetable or in powdered form, could reduce the prevalence of MNDs, most notably Se deficiency.
PLOS ONE | 2017
Diriba B. Kumssa; Edward J. M. Joy; Scott D. Young; David W. Odee; E. Louise Ander; Charles Magare; James Gitu; Martin R. Broadley
Moringa oleifera (MO) and M. stenopetala (MS) are two commonly cultivated species of the Moringaceae family. Some households in southern Ethiopia (S. ETH) and Kenya (KEN) plant MS and MO, respectively. The edible parts of these species are rich in amino acids, vitamins and minerals, especially selenium. Despite their nutritional value, Moringa is sometimes considered as a “famine food”. The aim of this study was to determine the extent of dietary utilization of these plants by Moringa Growing Households (MGHs). Moringa growing households were surveyed in 2015. Twenty-four and 56 heads of MGHs from S. ETH and KEN, respectively, were interviewed using semi-structured questionnaires. Subsistence agriculture was the main source of livelihood for all MGHs in S. ETH and 71% of those in KEN. All MGHs in S. ETH cultivated MS while those in KEN cultivated MO. Of the MGH heads in S. ETH, 71% had grown MS as long as they remember; the median cultivation period of MO in KEN was 15 years. All MGHs in S. ETH and 79% in KEN used Moringa leaves as a source of food. Forms of consumption of leaves were boiled fresh leaves, and leaf powder used in tea or mixed with other dishes. Other uses of Moringa include as medicine, fodder, shade, agroforestry, and as a source of income. Although MO and MS have multiple uses, MGHs face several challenges, including a lack of reliable information on nutritional and medicinal values, inadequate access to markets for their products, and pest and disease stresses to their plants. Research and development to address these challenges and to promote the use of these species in the fight against hidden hunger are necessary.
Applied Soil Ecology | 2010
Jacinta M. Kimiti; David W. Odee
Journal of Sustainable Development in Africa | 2009
Jacinta M. Kimiti; David W. Odee; B. Vanlauwe
Applied Soil Ecology | 2005
Johan Desaeger; David W. Odee; Joseph Machua; Milton Esitubi
Applied Soil Ecology | 2005
Johan Desaeger; David W. Odee; Joseph Machua; Milton Esitubi
Archive | 2004
Geoffrey M. Muluvi; David W. Odee; M. S. Runo; J. Gicheru