Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David W. Ragsdale is active.

Publication


Featured researches published by David W. Ragsdale.


Annual Review of Entomology | 2011

Ecology and Management of the Soybean Aphid in North America

David W. Ragsdale; Douglas A. Landis; Jacques Brodeur; George E. Heimpel; Nicolas Desneux

The soybean aphid, Aphis glycines Matsumura, has become the single most important arthropod pest of soybeans in North America. Native to Asia, this invasive species was first discovered in North America in July 2000 and has rapidly spread throughout the northcentral United States, much of southeastern Canada, and the northeastern United States. In response, important elements of the ecology of the soybean aphid in North America have been elucidated, with economic thresholds, sampling plans, and chemical control recommendations widely adopted. Aphid-resistant soybean varieties were available to growers in 2010. The preexisting community of aphid natural enemies has been highly effective in suppressing aphid populations in many situations, and classical biological control efforts have focused on the addition of parasitoids of Asian origin. The keys to sustainable management of this pest include understanding linkages between the soybean aphid and other introduced and native species in a landscape context along with continued development of aphid-resistant varieties.


Journal of Economic Entomology | 2007

Economic Threshold for Soybean Aphid (Hemiptera: Aphididae)

David W. Ragsdale; B. P. McCornack; R. C. Venette; Bruce D. Potter; Ian V MacRae; Erin W. Hodgson; M. E. O’Neal; K. D. Johnson; R. J. O’Neil; Christina D. DiFonzo; T. E. Hunt; Phillip Glogoza; E. M. Cullen

Abstract Soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), reached damaging levels in 2003 and 2005 in soybean, Glycine max (L.) Merrill, in most northern U.S. states and Canadian provinces, and it has become one of the most important pests of soybean throughout the North Central region. A common experimental protocol was adopted by participants in six states who provided data from 19 yield-loss experiments conducted over a 3-yr period. Population doubling times for field populations of soybean aphid averaged 6.8 d ± 0.8 d (mean ± SEM). The average economic threshold (ET) over all control costs, market values, and yield was 273 ± 38 (mean ± 95% confidence interval [CI], range 111–567) aphids per plant. This ET provides a 7-d lead time before aphid populations are expected to exceed the economic injury level (EIL) of 674 ± 95 (mean ± 95% CI, range 275–1,399) aphids per plant. Peak aphid density in 18 of the 19 location-years occurred during soybean growth stages R3 (beginning pod formation) to R5 (full size pod) with a single data set having aphid populations peaking at R6 (full size green seed). The ET developed here is strongly supported through soybean growth stage R5. Setting an ET at lower aphid densities increases the risk to producers by treating an aphid population that is growing too slowly to exceed the EIL in 7 d, eliminates generalist predators, and exposes a larger portion of the soybean aphid population to selection by insecticides, which could lead to development of insecticide resistance.


Annals of The Entomological Society of America | 2004

Soybean Aphid Biology in North America

David W. Ragsdale; David J. Voegtlin; Robert J. O’Neil

Abstract Soybean aphid, Aphis glycines Matsumura, a native of eastern Asia, was first discovered in North America in July 2000 in Wisconsin and subsequently in a total of 10 North Central U.S. states by September 2000. Currently, soybean aphid has spread to 20 U.S. states and three Canadian provinces, putting >60 million acres of soybean at risk to crop injury caused by this exotic insect. The life history of this species has been studied by a number of entomologists and crop protection specialists, and here we provide a summary of the observations made by ourselves and our colleagues. The soybean aphid has been observed at all stages of a heterecious holocyclic life cycle and seems to be adapting to a large geographic area of the North Central United States. Soybean aphid uses native and exotic primary hosts found in North America, specifically Rhamnus cathartica L. and Rhamnus alnifolia L’Hér. The aphid’s principal secondary host is soybean, Glycine max (L.) Merr., but there seems to be a lengthy gap in early spring between the production of alatae on buckthorn (Rhamnus spp.) and the occurrence of soybean. In the fall when soybean is senescing, a biological bottleneck is created as the aphid must develop sexual morphs on soybean that emigrate back to the primary host to complete the sexual phase of its life cycle. During the summer, A. glycines is prone to develop winged morphs during any generation on soybean, which puts much of the soybean crop at risk of invasion by this exotic species, even if the insect does not overwinter locally. The integrated pest management challenges presented by the aphid require a deeper understanding of its biology as it adapts to North America.


Annals of The Entomological Society of America | 2004

Assessing the Invasion by Soybean Aphid (Homoptera: Aphididae): Where Will It End?

R. C. Venette; David W. Ragsdale

Abstract The invasion of soybean aphid, Aphis glycines Matsumura, into soybean (Glycine max L.) production areas of the northcentral United States has generated substantial concern over the ultimate impact of this pest on domestic agriculture. To evaluate the potential extent and severity of its invasion in the United States, we examined possible pathways for the arrival of the insect, considered the likelihood for establishment in different regions of the United States, and described patterns of spread. Historical records of aphid interceptions by the U.S. Department of Agriculture, Animal and Plant Health Inspection Service suggest that populations of soybean aphid most likely arrived in the United States from Japan or China, either carried by an international airline passenger or associated with horticultural cargo. Two methods of climate comparison suggest that the aphid may ultimately be present in all soybean producing areas of the United States. However, the severity of infestations within these areas is likely to vary considerably in space and time.


American Journal of Potato Research | 2002

Aphid-transmitted potato viruses: The importance of understanding vector biology

Edward B. Radcliffe; David W. Ragsdale

This review addresses some of the biological complexities presented by aphid-transmitted viruses of potato,Solanum tuberosum L., and their vectors and discusses the application of this knowledge to the management of potato viruses with particular emphasis on seed potato production.


Annals of The Entomological Society of America | 2004

The Soybean Aphid in China: A Historical Review

Zhishan Wu; Donna Schenk-Hamlin; Wenyan Zhan; David W. Ragsdale; George E. Heimpel

Abstract Since the discovery of the soybean aphid, Aphis glycines Matsumura, in North America in the summer of 2000, a great deal of interest has developed in the biology, ecology, and control of this insect in its native range of eastern Asia. Although there is a wealth of literature on A. glycines that could help guide the efforts of North American entomologists, much of it is written in Chinese. Here, we review the Chinese-language literature on the biology, ecology, natural enemies, and control of the soybean aphid in China.


Journal of Economic Entomology | 2004

Demography of Soybean Aphid (Homoptera: Aphididae) at Summer Temperatures

B. P. McCornack; David W. Ragsdale; R. C. Venette

Abstract Soybean aphid, Aphis glycines Matsumura, is now widely established in soybean, Glycine max L., production areas of the northern United States and southern Canada and is becoming an important economic pest. Temperature effect on soybean aphid fecundity and survivorship is not well understood. We determined the optimal temperature for soybean aphid growth and reproduction on soybean under controlled conditions. We constructed life tables for soybean aphid at 20, 25, 30, and 35°C with a photoperiod of 16:8 (L:D) h. Population growth rates were greatest at 25°C. As temperature increased, net fecundity, gross fecundity, generation time, and life expectancy decreased. The prereproductive period did not differ between 20 and 30°C; however, at 30°C aphids required more degree-days (base 8.6°C) to develop. Nymphs exposed to 35°C did not complete development, and all individuals died within 11 d. Reproductive periods were significantly different at all temperatures, with aphids reproducing longer and producing more progeny at 20 and 25°C than at 30 or 35°C. Using a modification of the nonlinear Logan model, we estimated upper and optimal developmental thresholds to be 34.9 and 27.8°C, respectively. At 25°C, aphid populations doubled in 1.5 d; at 20 and 30°C, populations doubled in 1.9 d.


Annals of The Entomological Society of America | 2004

Prospects for Importation Biological Control of the Soybean Aphid: Anticipating Potential Costs and Benefits

George E. Heimpel; David W. Ragsdale; R. C. Venette; Keith R. Hopper; Robert J. O’Neil; Claire E. Rutledge; Zhishan Wu

Abstract We discuss the potential pros and cons of using importation biological control against the soybean aphid, Aphis glycines Matsumura (Homoptera: Aphididae). Importation of exotic organisms for biological control is never completely risk-free, but the potential negative impacts of not achieving biological control of invasive pests may exceed the risks associated with a biological control introduction. The potential benefits of biological control include reduced insecticide use and a reduced ability of the invasive pest to impact native flora and fauna, and we outline what the scope of these benefits may be for the soybean aphid. The benefits are only accrued, however, if biological control is successful, so the likelihood of successful biological must also be assessed. Accordingly, we outline some issues relevant to predicting the success of importation biological control of the soybean aphid. We also outline the potential risks to nontarget organisms that would be associated with importation biological control of the soybean aphid. Currently, two parasitoid species, Aphelinus albipodus Hayat and Fatima (Hymenoptera: Aphelinidae) and Lipolexis gracilis Förster (Hymenoptera: Braconidae) have been imported from Asia and have passed through quarantine. We briefly review the biology and host range of these two species. A different strain of A. albipodus that was released against the Russian wheat aphid, Diuraphis noxia (Mordvilko) (Homoptera: Aphididae), in the early 1990s was also found to attack the soybean aphid in the laboratory and has been redistributed from Wyoming to Minnesota and Wisconsin in field releases against the soybean aphid. We discuss our rationale for going forward with this redistribution.


Journal of Economic Entomology | 2009

Probability of Cost-Effective Management of Soybean Aphid (Hemiptera: Aphididae) in North America

Kevin D. Johnson; Matthew E. O'Neal; David W. Ragsdale; Christina DiFonzo; Scott M. Swinton; Philip M. Dixon; Bruce D. Potter; Erin W. Hodgson; Alejandro C. Costamagna

ABSTRACT Soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is one of the most damaging pests of soybean, Glycine max (L.) Merrill, in the midwestern United States and Canada. We compared three soybean aphid management techniques in three midwestern states (Iowa, Michigan, and Minnesota) for a 3-yr period (2005–2007). Management techniques included an untreated control, an insecticidal seed treatment, an insecticide fungicide tank-mix applied at flowering (i.e., a prophylactic treatment), and an integrated pest management (IPM) treatment (i.e., an insecticide applied based on a weekly scouting and an economic threshold). In 2005 and 2007, multiple locations experienced aphid population levels that exceeded the economic threshold, resulting in the application of the IPM treatment. Regardless of the timing of the application, all insecticide treatments reduced aphid populations compared with the untreated, and all treatments protected yield as compared with the untreated. Treatment efficacy and cost data were combined to compute the probability of a positive economic return. The IPM treatment had the highest probability of cost effectiveness, compared with the prophylactic tank-mix of fungicide and insecticide. The probability of surpassing the gain threshold was highest in the IPM treatment, regardless of the scouting cost assigned to the treatment (ranging from


Archive | 2001

Epidemiology and Field Control of PVY and PLRV

David W. Ragsdale; Edward B. Radcliffe; Christina DiFonzo

0.00 to

Collaboration


Dive into the David W. Ragsdale's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeffrey A. Davis

Louisiana State University Agricultural Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian V MacRae

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge