Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David W. Rutherford is active.

Publication


Featured researches published by David W. Rutherford.


Clays and Clay Minerals | 1997

EFFECTS OF EXCHANGED CATION ON THE MICROPOROSITY OF MONTMORILLONITE

David W. Rutherford; Cary T. Chiou; Dennis D. Eberl

The micropore volumes of 2 montmorillonites (SAz-1 and SWy-1), each exchanged with Ca, Na, K, Cs and tetramethylammonium (TMA) ions, were calculated from the measured vapor adsorption data of N2 and neo-hexane by use of t- and αs-plots. The corresponding surface areas of the exchanged clays were determined from Brunauer-Emmett-Teller (BET) plots of N2 adsorption data. Micropore volumes and surface areas of the samples increased with the size of exchanged cation: TMA > Cs > K > Ca > Na. The SAz-1 exchanged clays showed generally greater micropore volumes and surface areas than the corresponding SWy-1 clays. The vapor adsorption data and d(001) measurements for dry clay samples were used together to evaluate the likely locations and accessibility of clay micropores, especially the relative accessibility of their interlayer spacing. For both source clays exchanged with Na, Ca and K ions, the interlayer spacing appeared to be too small to admit nonpolar gases and the accessible micropores appeared to have dimensions greater than 5.0 Å, the limiting molecular dimension of neo-hexane. In these systems, there was a good consistency of micropore volumes detected by N2 and neo-hexane. When the clays were intercalated with relatively large cations (TMA and possibly Cs), the large layer expansion created additional microporosity, which was more readily accessible to small N2 than to relatively large neo-hexane. Hence, the micropore volume as detected by N2 was greater than that detected by neo-hexane. The micropore volumes with pore dimensions greater than 5 Å determined for clays exchanged with Na, Ca and K likely resulted from the pores on particle edges and void created by overlap regions of layers. The increase in micropore volumes with pore dimensions less than 5 Å determined for clays exchanged with TMA and possibly Cs could be caused by opening of the interlayer region by the intercalation of these large cations.


Clays and Clay Minerals | 1997

Effects of exchanged cation and layer charge on the sorption of water and EGME vapors on montmorillonite clays

Cary T. Chiou; David W. Rutherford

The effects of exchanged cation and layer charge on the sorption of water and ethylene glycol monoethyl ether (EGME) vapors on montmorillonite have been studied on SAz-1 and SWy-1 source clays, each exchanged respectively with Ca, Na, K, Cs and tetramethylammonium (TMA) cations. The corresponding lattice expansions were also determined, and the corresponding N2 adsorption data were provided for comparison. For clays exchanged with cations of low hydrating powers (such as K, Cs and TMA), water shows a notably lower uptake than does N2 at low relative pressures (P/P0). By contrast, EGME shows higher uptakes than N2 on all exchanged clays at all P/P0. The anomaly for water is attributed to its relatively low attraction for siloxane surfaces of montmorillonite because of its high cohesive energy density. In addition to solvating cations and expanding interlayers, water and EGME vapors condense into small clay pores and interlayer voids created by interlayer expansion. The initial (dry) interlayer separation varies more significantly with cation type than with layer charge; the water-saturated interlayer separation varies more with cation type than the EGME-saturated interlayer separation. Because of the differences in surface adsorption and interlayer expansion for water and EGME, no general correspondence is found between the isotherms of water and EGME on exchanged clays, nor is a simple relation observed between the overall uptake of either vapor and the cation solvating power. The excess interlayer capacities of water and of EGME that result from lattice expansion of the exchanged clays are estimated by correcting for amounts of vapor adsorption on planar clay surfaces and of vapor condensation into intrinsic clay pores. The resulting data follow more closely the relative solvating powers of the exchanged cations.


Environmental Science & Technology | 2013

Sorption of Pure N2O to Biochars and Other Organic and Inorganic Materials under Anhydrous Conditions

Gerard Cornelissen; David W. Rutherford; Hans Peter H. Arp; Peter Dörsch; Charlene N. Kelly; Colleen E. Rostad

Suppression of nitrous oxide (N2O) emissions from soil is commonly observed after amendment with biochar. The mechanisms accounting for this suppression are not yet understood. One possible contributing mechanism is N2O sorption to biochar. The sorption of N2O and carbon dioxide (CO2) to four biochars was measured in an anhydrous system with pure N2O. The biochar data were compared to those for two activated carbons and other components potentially present in soils-uncharred pine wood and peat-and five inorganic metal oxides with variable surface areas. Langmuir maximum sorption capacities (Qmax) for N2O on the pine wood biochars (generated between 250 and 500 °C) and activated carbons were 17-73 cm(3) g(-1) at 20 °C (median 51 cm(3) g(-1)), with Langmuir affinities (b) of 2-5 atm(-1) (median 3.4 atm(-1)). Both Qmax and b of the charred materials were substantially higher than those for peat, uncharred wood, and metal oxides [Qmax 1-34 cm(3) g(-1) (median 7 cm(3) g(-1)); b 0.4-1.7 atm(-1) (median 0.7 atm(-1))]. This indicates that biochar can bind N2O more strongly than both mineral and organic soil materials. Qmax and b for CO2 were comparable to those for N2O. Modeled sorption coefficients obtained with an independent polyparameter-linear free-energy relationship matched measured data within a factor 2 for mineral surfaces but underestimated by a factor of 5-24 for biochar and carbonaceous surfaces. Isosteric enthalpies of sorption of N2O were mostly between -20 and -30 kJ mol(-1), slightly more exothermic than enthalpies of condensation (-16.1 kJ mol(-1)). Qmax of N2O on biochar (50000-130000 μg g(-1) biochar at 20 °C) exceeded the N2O emission suppressions observed in the literature (range 0.5-960 μg g(-1) biochar; median 16 μg g(-1)) by several orders of magnitude. Thus, the hypothesis could not be falsified that sorption of N2O to biochar is a mechanism of N2O emission suppression.


Applied Spectroscopy | 2008

Mid-Infrared Diffuse Reflectance Spectroscopic Examination of Charred Pine Wood, Bark, Cellulose, and Lignin: Implications for the Quantitative Determination of Charcoal in Soils

James B. Reeves; Gregory W. McCarty; David W. Rutherford; Robert L. Wershaw

Fires in terrestrial ecosystems produce large amounts of charcoal that persist in the environment and represent a substantial pool of sequestered carbon in soil. The objective of this research was to investigate the effect of charring on mid-infrared spectra of materials likely to be present in forest fires in order to determine the feasibility of determining charred organic matter in soils. Four materials (cellulose, lignin, pine bark, and pine wood) and char from these materials, created by charring for various durations (1 to 168 h) and at various temperatures (200 to 450 °C), were studied. Mid-infrared spectra and measures of acidity (total acids, carboxylic acids, lactones, and phenols as determined by titration) were determined for 56 different samples (not all samples were charred at all temperatures/durations). Results showed spectral changes that varied with the material, temperature, and duration of charring. Despite the wide range of spectral changes seen with the differing materials and length/temperature of charring, partial least squares calibrations for total acids, carboxylic acids, lactones, and phenols were successfully created (coefficient of determination and root mean squared deviation of 0.970 and 0.380; 0.933 and 0.227; 0.976 and 0.120; and 0.982 and 0.101 meq/g, respectively), indicating that there is a sufficient commonality in the changes to develop calibrations without the need for unique calibrations for each specific material or condition of char formation.


Soil Science and Plant Nutrition | 2015

pH effects of the addition of three biochars to acidic Indonesian mineral soils

Vegard Martinsen; Vanja Alling; Nl Nurida; Jan Mulder; Sarah E. Hale; C. Ritz; David W. Rutherford; Alex Heikens; Gijs D. Breedveld; Gerard Cornelissen

Abstract Soil acidity may severely reduce crop production. Biochar (BC) may increase soil pH and cation exchange capacity (CEC) but reported effects differ substantially. In a systematic approach, using a standardized protocol on a uniquely large number set of 31 acidic soils, we quantified the effect of increasing amounts (0–30%; weight:weight) of three types of field-produced BCs (from cacao (Theobroma cacao. L.) shell, oil palm (Elaeis guineensis. Jacq.) shell and rice (Oryza sativa. L.) husk) on soil pH and CEC. Soils were sampled from croplands at Java, Sumatra and Kalimantan, Indonesia. All BCs caused a significant increase in mean soil pH with a stronger response and a greater maximum increase for the cacao shell BC addition, due to a greater acid neutralizing capacity (ANC) and larger amounts of extractable base cations. At 1% BC addition, corresponding to about 30 tons ha−1, the estimated increase in soil pH from the initial mean pH of 4.7 was about 0.5 units for the cacao shell BC, whereas this was only 0.05 and 0.04 units for the oil palm shell and rice husk BC, respectively. Besides depending on BC type, the increase in soil pH upon the addition of each of the three BCs was mainly dependent on soil CEC (low CEC resulting in stronger pH increase), and to a lesser extent on initial soil pH (higher initial pH resulting in stronger pH increase). Addition of BC also increased the amount of exchangeable base cations (cacao shell ≫ oil palm and rice husk) and CEC. Through this systematic screening of the effect of BC on pH and CEC of acidic soils, we show that a small addition of BC, in particular if made of cacao shell, to acidic agricultural soils increases soil pH and CEC. However, the response is highly dependent on the type, quality and amount of the added BC as well as on intrinsic soil properties, mainly CEC.


Pedosphere | 2015

Switchgrass Biochar Effects on Plant Biomass and Microbial Dynamics in Two Soils from Different Regions

Charlene Kelly; Francisco C. Calderón; Veronica Acosta-Martinez; Maysoon M. Mikha; Joseph G. Benjamin; David W. Rutherford; Colleen E. Rostad

Abstract Biochar amendments to soils may alter soil function and fertility in various ways, including through induced changes in the microbial community. We assessed microbial activity and community composition of two distinct clayey soil types, an Aridisol from Colorado (CO) in the U.S. Central Great Plains, and an Alfisol from Virginia (VA) in the southeastern USA following the application of switchgrass ( Panicum virgatum ) biochar. The switchgrass biochar was applied at four levels, 0%, 2.5%, 5%, and 10%, approximately equivalent to biochar additions of 0, 25, 50, and 100 t ha −1 , respectively, to the soils grown with wheat ( Triticum aestivum ) in an eight-week growth chamber experiment. We measured wheat shoot biomass and nitrogen (N) content and soil nutrient availability and N mineralization rates, and characterized the microbial fatty acid methyl ester (FAME) profiles of the soils. Net N mineralization rates decreased in both soils in proportion to an increase in biochar levels, but the effect was more marked in the VA soil, where net N mineralization decreased from −2.1 to −38.4 mg kg −1 . The 10% biochar addition increased soil pH, electrical conductivity, Mehlich- and bicarbonate-extractable phosphorus (P), and extractable potassium (K) in both soil types. The wheat shoot biomass decreased from 17.7 to 9.1 g with incremental additions of biochar in the CO soil, but no difference was noted in plants grown in the VA soil. The FAME recovery assay indicated that the switchgrass biochar addition could introduce artifacts in analysis, so the results needed to be interpreted with caution. Non-corrected total FAME concentrations indicated a decline by 45% and 34% with 10% biochar addition in the CO and VA soils, respectively, though these differences became nonsignificant when the extraction efficiency correction factor was applied. A significant decline in the fungi:bacteria ratio was still evident upon correction in the CO soil with biochar. Switchgrass biochar had the potential to cause short-term negative impacts on plant biomass and alter soil microbial community structure unless measures were taken to add supplemental N and labile carbon (C).


Journal of Near Infrared Spectroscopy | 2007

Near infrared spectroscopic examination of charred pine wood, bark, cellulose and lignin: implications for the quantitative determination of charcoal in soils

James B. Reeves; Gregory W. McCarty; David W. Rutherford; Robert L. Wershaw

The objective of this research was to investigate the effect of charring on near infrared spectra of materials likely to be present in forest fires in order to determine the feasibility of determining charred carbon in soils. Four materials (cellulose, lignin, pine bark and pine wood) and char from these materials created by charring for various durations (1 to 168 h) and at various temperatures (200 to 450°C) were studied. Near infrared spectra and measures of acidity (total acids, carboxylic acids, lactones and phenols as determined by titration) were available for 56 different samples (Not all samples charred at all temperatures/durations). Results showed spectral changes that varied with the material, temperature and duration of charring. Examination of spectra and correlation plots indicated that changes in the constituents of the materials in question, such as loss of OH groups in carbohydrates, rather than direct determination of typical products produced by charring, such as carboxylic acids, lactones and phenols, were the basis for the spectral changes. Finally, while the spectral changes resulting from charring appeared to be relatively unique to each material, PLS calibrations for total acids, carboxylic acids, lactones and phenols were successfully created (with R2 of 0.991, 0.943, 0.931 and 0.944, respectively) indicating that there is a sufficient commonality in the changes to develop calibrations without the need for unique calibrations for each specific set of charring conditions (i.e. material, temperature and time of heating).


Applied Geochemistry | 1994

Welded tuff porosity characterization using mercury intrusion, nitrogen and ethylene glycol monoethyl ether sorption and epifluorescence microscopy

Michael M. Reddy; Hans C. Claassen; David W. Rutherford; Cary T. Chiou

Porosity of welded tuff from Snowshoe Mountain, Colorado, was characterized by mercury intrusion porosimetry (MIP), nitrogen sorption porosimetry, ethylene glycol monoethyl ether (EGME) gas phase sorption and epifluorescence optical microscopy. Crushed tuff of two particle-size fractions (1-0.3 mm and less than 0.212 mm), sawed sections of whole rock and crushed tuff that had been reacted with 0.1 N hydrochloric acid were examined. Average MIP pore diameter values were in the range of 0.01–0.02μm. Intrusion volume was greatest for tuff reacted with 0.1 N hydrochloric acid and least for sawed tuff. Cut rock had the smallest porosity (4.72%) and crushed tuff reacted in hydrochloric acid had the largest porosity (6.56%). Mean pore diameters from nitrogen sorption measurements were 0.0075–0.0187 μm. Nitrogen adsorption pore volumes (from 0.005 to 0.013 cm3/g) and porosity values (from 1.34 to 3.21%) were less than the corresponding values obtained by MIP. More than half of the total tuff pore volume was associated with pore diameters < 0.05μm. Vapor sorption of EGME demonstrated that tuff pores contain a clay-like material. Epifluorescence microscopy indicated that connected porosity is heterogeneously distributed within the tuff matix; mineral grains had little porosity. Tuff porosity may have important consequences for contaminant disposal in this host rock.


Pedosphere | 2017

Incorporation of Biochar Carbon into Stable Soil Aggregates: The Role of Clay Mineralogy and Other Soil Characteristics

Charlene N. Kelly; Joseph G. Benjamin; Francisco C. Calderón; Maysoon M. Mikha; David W. Rutherford; Colleen E. Rostad

Aggregation and structure play key roles in water-holding capacity and stability of soils. In this study, the incorporation of carbon (C) from switchgrass biochar into stable aggregate size fractions was assessed in an Aridisol (from Colorado, USA) dominated by 2:1 clays and an Alfisol (from Virginia, USA) containing weathered mixed 1:1 and 2:1 mineralogy, to evaluate the effect of biochar addition on soil characteristics. The biochar was applied at 4 levels, 0, 25, 50, and 100 g kg−1, to the soils grown with wheat in a growth chamber experiment. The changes in soil strength and water-holding capacity using water release curves were measured. In the Colorado soil, the proportion of soil occurring in large aggregates decreased, with concomitant increases in small size fractions. No changes in aggregate size fractions occurred in the Virginia soil. In the Colorado soil, C content increased from 3.3 to 16.8 g kg−1, whereas in the 2 000 µm fraction. The greatest increase (from 6.2 to 22.0 g kg−1) occurred in the 53–250 µm fraction. The results indicated that C was incorporated into larger aggregates in the Virginia soil, but remained largely unassociated to soil particles in the Colorado soil. Biochar addition had no significant effect on water-holding capacity or strength measurements. Adding biochar to more weathered soils with high native soil organic content may result in greater stabilization of incorporated C and result in less loss because of erosion and transport, compared with the soils dominated by 2:1 clays and low native soil organic content.


Environmental Science & Technology | 2012

Quantifying the Total and Bioavailable Polycyclic Aromatic Hydrocarbons and Dioxins in Biochars

Sarah E. Hale; Johannes Lehmann; David W. Rutherford; Andrew R. Zimmerman; Robert Thomas Bachmann; Victor Shitumbanuma; Adam O’Toole; Kristina Sundqvist; Hans Peter H. Arp; Gerard Cornelissen

Collaboration


Dive into the David W. Rutherford's collaboration.

Top Co-Authors

Avatar

Cary T. Chiou

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar

Colleen E. Rostad

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Robert L. Wershaw

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Gerard Cornelissen

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel E. Kile

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

James B. Reeves

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Hans Peter H. Arp

Norwegian Geotechnical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge