Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David W. Stepp is active.

Publication


Featured researches published by David W. Stepp.


Circulation | 2009

Vascular Disease in Mice With a Dysfunctional Circadian Clock

Ciprian B. Anea; Maoxiang Zhang; David W. Stepp; G. Bryan Simkins; Guy L. Reed; David Fulton; R. Daniel Rudic

Background— Cardiovascular disease is the leading cause of death for both men and women in the United States and the world. A profound pattern exists in the time of day at which the death occurs; it is in the morning, when the endothelium is most vulnerable and blood pressure surges, that stroke and heart attack most frequently happen. Although the molecular components of circadian rhythms rhythmically oscillate in blood vessels, evidence of a direct function for the “circadian clock” in the progression to vascular disease is lacking. Methods and Results— In the present study, we found increased pathological remodeling and vascular injury in mice with aberrant circadian rhythms, Bmal1-knockout and Clock mutant. In addition, naive aortas from Bmal1-knockout and Clock mutant mice exhibit endothelial dysfunction. Akt and subsequent nitric oxide signaling, a pathway critical to vascular function, was significantly attenuated in arteries from Bmal1-knockout mice. Conclusions— Our data reveal a new role for the circadian clock during chronic vascular responses that may be of significance in the progression of vascular disease.


Hypertension | 2005

Fructose Feeding Increases Insulin Resistance but Not Blood Pressure in Sprague-Dawley Rats

Gerard D'Angelo; Ahmed A. Elmarakby; David M. Pollock; David W. Stepp

Fructose feeding has been widely reported to cause hypertension in rats, as assessed indirectly by tail cuff plethysmography. Because there are potentially significant drawbacks associated with plethysmography, we determined whether blood pressure changes could be detected by long-term monitoring with telemetry in age-matched male Sprague-Dawley rats fed either a normal or high-fructose diet for 8 weeks. Fasting plasma glucose (171±10 versus 120±10 mg/dL), plasma insulin (1.8±0.5 versus 0.7±0.1 &mgr;g/L), and plasma triglycerides (39±2 versus 30±2 mg/dL) were modestly but significantly elevated in fructose-fed animals. Using the hyperinsulinemic euglycemic clamp technique, the rate of glucose infusion necessary to maintain equivalent plasma glucose was significantly reduced in fructose-fed compared with control animals (22.9±3.6 versus 41.5±2.9 mg/kg per minute; P<0.05). However, mean arterial pressure (24-hour) did not change in the fructose-fed animals over the 8-week period (111±1 versus 114±2 mm Hg; week 0 versus 8), nor was it different from that in control animals (109±2 mm Hg). Conversely, systolic blood pressure measured by tail cuff plethysmography at the end of the 8-week period was significantly greater in fructose-fed versus control animals (162±5 versus 139±1 mm Hg; P<0.001). Together, these data demonstrate that long-term fructose feeding induces mild insulin resistance but does not elevate blood pressure. We propose that previous reports of fructose-induced hypertension reflect a heightened stress response by fructose-fed rats associated with restraint and tail cuff inflation.


Diabetes | 2013

miRNA-93 Inhibits GLUT4 and Is Overexpressed in Adipose Tissue of Polycystic Ovary Syndrome Patients and Women With Insulin Resistance

Yen Hao Chen; Saleh Heneidi; Jung Min Lee; Lawrence C. Layman; David W. Stepp; Gloria Mabel Gamboa; Bo Shiun Chen; Gregorio D. Chazenbalk; Ricardo Azziz

Approximately 70% of women with polycystic ovary syndrome (PCOS) have intrinsic insulin resistance (IR) above and beyond that associated with body mass, including dysfunctional glucose metabolism in adipose tissue (AT). In AT, analysis of the IRS/PI3-K/AKT pathway signaling components identified only GLUT4 expression to be significantly lower in PCOS patients and in control subjects with IR. We examined the role of miRNAs, particularly in the regulation of GLUT4, the insulin-sensitive glucose transporter, in the AT of PCOS and matched control subjects. PCOS AT was determined to have a differentially expressed miRNA profile, including upregulated miR-93, -133, and -223. GLUT4 is a highly predicted target for miR-93, while miR-133 and miR-223 have been demonstrated to regulate GLUT4 expression in cardiomyocytes. Expression of miR-93 revealed a strong correlation between the homeostasis model assessment of IR in vivo values and GLUT4 and miR-93 but not miR-133 and -223 expression in human AT. Overexpression of miR-93 resulted in downregulation of GLUT4 gene expression in adipocytes through direct targeting of the GLUT4 3′UTR, while inhibition of miR-93 activity led to increased GLUT4 expression. These results point to a novel mechanism for regulating insulin-stimulated glucose uptake via miR-93 and demonstrate upregulated miR-93 expression in all PCOS, and in non-PCOS women with IR, possibly accounting for the IR of the syndrome. In contrast, miR-133 and miR-223 may have a different, although yet to be defined, role in the IR of PCOS.


Hypertension | 2009

Obesity Increases Blood Pressure, Cerebral Vascular Remodeling, and Severity of Stroke in the Zucker Rat

Jessica M. Osmond; James D. Mintz; Brian Dalton; David W. Stepp

Obesity is a risk factor for stroke, but the mechanisms by which obesity increases stroke risk are unknown. Because microvascular architecture contributes to the outcome of stroke, we hypothesized that middle cerebral arteries (MCAs) from obese Zucker rats (OZRs) undergo inward remodeling and develop increased myogenic tone compared with those in lean Zucker rats (LZRs). We further hypothesized that OZRs have an increased infarct after cerebral ischemia and that changes in vascular structure and function correlate with the development of hypertension in OZRs. Blood pressure was measured by telemetry in LZRs and OZRs from 6 to 17 weeks of age. Vessel structure and function were assessed in isolated MCAs. Stroke damage was assessed after ischemia was induced for 60 minutes followed by 24 hours of reperfusion. Although mean arterial pressure was similar between young rats (6 to 8 weeks old), mean arterial pressure was higher in adult (14 to 17 weeks old) OZRs than in LZRs. MCAs from OZRs had a smaller lumen diameter and increased myogenic vasoconstriction compared with those from LZRs. After ischemia, infarction was 58% larger in OZRs than in LZRs. Before the development of hypertension, MCA myogenic reactivity and lumen diameter, as well as infarct size, were similar between young LZRs and OZRs. Our results indicate that the MCAs of OZRs undergo structural remodeling and that these rats have greater cerebral injury after cerebral ischemia. These cerebrovascular changes correlate with the development of hypertension and suggest that the increased blood pressure may be the major determinant for stroke risk in obese individuals.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2008

Paradoxical Activation of Endothelial Nitric Oxide Synthase by NADPH Oxidase

Qian Zhang; Pulkit Malik; Deepesh Pandey; Sonali Gupta; Davin Jagnandan; Eric J. Belin de Chantemèle; Botond Banfi; Mario B. Marrero; R. Daniel Rudic; David W. Stepp; David Fulton

Objectives—Increased formation of reactive oxygen species (ROS) has been identified as a causative factor in endothelial dysfunction by reducing NO bioavailability and uncoupling endothelial nitric oxide synthase (eNOS). However, the specific contribution of ROS to endothelial function is not well understood. Methods and Results—A major source of intracellular ROS is the NADPH oxidase (Nox) family of enzymes. The goal of the current study was to directly assess the contribution of NADPH oxidase derived superoxide to eNOS function by expressing Nox5, a single gene product that constitutively produces superoxide within cells. Paradoxically, we found that instead of inhibiting eNOS, coexpression of Nox5 increased NO release from both bovine and human endothelial cells. To establish the functional significance of this observation in intact blood vessels, the endothelium of mouse aorta was transduced with Nox5 or control adenoviruses. Nox5 potently inhibited Ach-induced relaxation and potentiated contractile responses to phenylephrine. In precontracted aortae, acute exposure to superoxide dismutase induced significant vascular relaxation in vessels exposed to Nox5 versus control and unmasked the ability of Nox5 to activate eNOS in blood vessel endothelium. Conclusions—These findings suggest that ROS inhibit eNOS function via consumption of NO rather than direct inhibition of enzymatic activity.


Circulation Research | 2009

Deletion of Protein Tyrosine Phosphatase 1b Improves Peripheral Insulin Resistance and Vascular Function in Obese, Leptin-Resistant Mice via Reduced Oxidant Tone

M. Irfan Ali; Pimonrat Ketsawatsomkron; Eric J. Belin de Chantemèle; James D. Mintz; Kenjiro Muta; Christina Salet; Stephen M. Black; Michel L. Tremblay; David Fulton; Mario B. Marrero; David W. Stepp

Rationale: Obesity is a risk factor for cardiovascular dysfunction, yet the underlying factors driving this impaired function remain poorly understood. Insulin resistance is a common pathology in obese patients and has been shown to impair vascular function. Whether insulin resistance or obesity, itself, is causal remains unclear. Objective: The present study tested the hypothesis that insulin resistance is the underlying mediator for impaired NO-mediated dilation in obesity by genetic deletion of the insulin-desensitizing enzyme protein tyrosine phosphatase (PTP)1B in db/db mice. Methods and Results: The db/db mouse is morbidly obese, insulin-resistant, and has tissue-specific elevation in PTP1B expression compared to lean controls. In db/db mice, PTP1B deletion improved glucose clearance, dyslipidemia, and insulin receptor signaling in muscle and fat. Hepatic insulin signaling in db/db mice was not improved by deletion of PTP1B, indicating specific amelioration of peripheral insulin resistance. Additionally, obese mice demonstrate an impaired endothelium dependent and independent vasodilation to acetylcholine and sodium nitroprusside, respectively. This impairment, which correlated with increased superoxide in the db/db mice, was corrected by superoxide scavenging. Increased superoxide production was associated with increased expression of NAD(P)H oxidase 1 and its molecular regulators, Noxo1 and Noxa1. Conclusions: Deletion of PTP1B improved both endothelium dependent and independent NO-mediated dilation and reduced superoxide generation in db/db mice. PTP1B deletion did not affect any vascular function in lean mice. Taken together, these data reveal a role for peripheral insulin resistance as the mediator of vascular dysfunction in obesity.


American Journal of Physiology-heart and Circulatory Physiology | 2012

Diabetes-induced vascular dysfunction involves arginase I.

Maritza J. Romero; Jennifer A. Iddings; Daniel H. Platt; M. Irfan Ali; Stephen D. Cederbaum; David W. Stepp; Ruth B. Caldwell; Robert W. Caldwell

Arginase can cause vascular dysfunction by competing with nitric oxide synthase for l-arginine and by increasing cell proliferation and collagen formation, which promote vascular fibrosis/stiffening. We have shown that increased arginase expression/activity contribute to vascular endothelial cell (EC) dysfunction. Here, we examined the roles of the two arginase isoforms, arginase I and II (AI and AII, respectively), in this process. Experiments were performed using streptozotocin-induced diabetic mice: wild-type (WT) mice and knockout mice lacking the AII isoform alone (AI(+/+)AII(-/-)) or in combination with partial deletion of AI (AI(+/-)AII (-/-)). EC-dependent vasorelaxation of aortic rings and arterial fibrosis and stiffness were assessed in relation to arginase activity and expression. Diabetes reduced mean EC-dependent vasorelaxation markedly in diabetic WT and AI(+/+)AII(-/-) aortas (53% and 44% vs. controls, respectively) compared with a 27% decrease in AI(+/-)AII (-/-) vessels. Coronary fibrosis was also increased in diabetic WT and AI(+/+)AII(-/-) mice (1.9- and 1.7-fold vs. controls, respectively) but was not altered in AI(+/-)AII (-/-) diabetic mice. Carotid stiffness was increased by 142% in WT diabetic mice compared with 51% in AI(+/+)AII(-/-) mice and 19% in AI(+/-)AII (-/-) mice. In diabetic WT and AI(+/+)AII(-/-) mice, aortic arginase activity and AI expression were significantly increased compared with control mice, but neither parameter was altered in AI(+/-)AII (-/-) mice. In summary, AI(+/-)AII (-/-) mice exhibit better EC-dependent vasodilation and less vascular stiffness and coronary fibrosis compared with diabetic WT and AI(+/+)AII(-/-) mice. These data indicate a major involvement of AI in diabetes-induced vascular dysfunction.


Hypertension | 2011

Impact of Leptin-Mediated Sympatho-Activation on Cardiovascular Function in Obese Mice

Eric J. Belin de Chantemèle; James D. Mintz; William E. Rainey; David W. Stepp

Although the anorexic effects of leptin are lost in obesity, leptin-mediated sympatho-activation is preserved. The cardiovascular consequences of leptin-mediated sympatho-activation in obesity are poorly understood. We tested the hypothesis that 32 weeks of high-fat diet (HFD) induces metabolic leptin resistance but preserves leptin-mediated sympatho-activation of the cardiovascular system. HFD in mice significantly increased body weight and plasma leptin concentrations but significantly reduced the anorexic effects of leptin. HFD increased heart rate, stroke volume, cardiac output, and plasma aldosterone levels but not blood pressure. As reflected by the contractile response to phenylephrine measured both in vivo and ex vivo, vascular adrenergic reactivity was reduced by HFD, suggesting that reductions in sympathetic tone to the periphery vasculature may mitigate sympatho-activation of the heart and the renin-angiotensin-aldosterone system. Tachyphylaxis was partially restored by symptho-inhibition and not present in ob/ob and db/db mice, despite obesity, arguing for a sympatho-mediated and leptin-specific mechanism. Although infusion of leptin in HFD mice had no effect on heart rate or blood pressure, it further increased aldosterone levels and further reduced vascular adrenergic tone in the absence of weight loss, indicating persistent leptin-mediated stimulation of the cardiovascular system in obesity. In conclusion, these data indicate that, despite metabolic leptin resistance, leptin-mediated stimulation of the heart, the vasculature, and aldosterone production persists in obesity. Blood pressure effects in response to leptin may be limited by a tachyphylactic response in the circulation, suggesting that failure of adrenergic desensitization may be a requisite step for hypertension in the context of obesity.


Circulation Research | 2012

Increased Superoxide and Endothelial NO Synthase Uncoupling in Blood Vessels of Bmal1-Knockout Mice

Ciprian B. Anea; Bo Cheng; Shruti Sharma; Sanjiv Kumar; R. William Caldwell; Lin Yao; M. Irfan Ali; Ana M. Merloiu; David W. Stepp; Stephen M. Black; David Fulton; R. Daniel Rudic

Rationale: Disruption of the circadian clock in mice produces vascular dysfunction as evidenced by impairments in endothelium-dependent signaling, vasomotion, and blood vessel remodeling. Although the altered function of endothelial NO synthase and the overproduction of reactive oxygen species are central to dysfunction of the endothelium, to date, the impact of the circadian clock on endothelial NO synthase coupling and vascular reactive oxygen species production is not known. Objective: The goals of the present study were to determine whether deletion of a critical component of the circadian clock, Bmal1, can influence endothelial NO synthase coupling and reactive oxygen species levels in arteries from Bmal1-knockout (KO) mice. Methods and Results: Endothelial function was reduced in aortae from Bmal1-KO mice and improved by scavenging reactive oxygen species with polyethylene glycol-superoxide dismutase and nonselectively inhibiting cyclooxygenase isoforms with indomethacin. Aortae from Bmal1-KO mice exhibited enhanced superoxide levels as determined by electron paramagnetic resonance spectroscopy and dihydroethidium fluorescence, an elevation that was abrogated by administration of nitro-L-arginine methyl ester. High-performance liquid chromatography analysis revealed a reduction in tetrahydrobiopterin and an increase in dihydrobiopterin levels in the lung and aorta of Bmal1-KO mice, whereas supplementation with tetrahydrobiopterin improved endothelial function in the circadian clock KO mice. Furthermore, levels of tetrahydrobiopterin, dihydrobiopterin, and the key enzymes that regulate biopterin bioavailability, GTP cyclohydrolase and dihydrofolate reductase exhibited a circadian expression pattern. Conclusions: Having an established influence in the metabolic control of glucose and lipids, herein, we describe a novel role for the circadian clock in metabolism of biopterins, with a significant impact in the vasculature, to regulate coupling of endothelial NO synthase, production of superoxide, and maintenance of endothelial function.


Free Radical Biology and Medicine | 2012

Nitric Oxide reduces NADPH oxidase 5 (Nox5) activity by reversible S-nitrosylation

Jin Qian; Feng Chen; Yevgeniy Kovalenkov; Deepesh Pandey; M. Arthur Moseley; Matthew W. Foster; Stephen M. Black; Richard C. Venema; David W. Stepp; David Fulton

The NADPH oxidases (Noxs) are a family of transmembrane oxidoreductases that produce superoxide and other reactive oxygen species (ROS). Nox5 was the last of the conventional Nox isoforms to be identified and is a calcium-dependent enzyme that does not depend on accessory subunits for activation. Recently, Nox5 was shown to be expressed in human blood vessels and therefore the goal of this study was to determine whether nitric oxide (NO) can modulate Nox5 activity. Endogenously produced NO potently inhibited basal and stimulated Nox5 activity and this inhibition was reversible with chronic, but not acute, exposure to L-NAME. Nox5 activity was reduced by NO donors, iNOS, and eNOS and in endothelial cells and LPS-stimulated smooth muscle cells in a manner dependent on NO concentration. ROS production was diminished by NO in an isolated enzyme activity assay replete with surplus calcium and NADPH. There was no evidence for NO-dependent changes in tyrosine nitration, glutathiolation, or phosphorylation of Nox5. In contrast, there was evidence for the increased nitrosylation of Nox5 as determined by the biotin-switch assay and mass spectrometry. Four S-nitrosylation sites were identified and of these, mutation of C694 dramatically lowered Nox5 activity, NO sensitivity, and biotin labeling. Furthermore, coexpression of the denitrosylation enzymes thioredoxin 1 and GSNO reductase prevented NO-dependent inhibition of Nox5. The potency of NO against other Nox enzymes was in the order Nox1 ≥ Nox3 > Nox5 > Nox2, whereas Nox4 was refractory. Collectively, these results suggest that endogenously produced NO can directly S-nitrosylate and inhibit the activity of Nox5.

Collaboration


Dive into the David W. Stepp's collaboration.

Top Co-Authors

Avatar

David Fulton

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

James D. Mintz

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Feng Chen

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Daniel Rudic

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

M. Irfan Ali

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Yusi Wang

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Scott A. Barman

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Shuiqing Qiu

Georgia Regents University

View shared research outputs
Researchain Logo
Decentralizing Knowledge