Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David W. Thieltges is active.

Publication


Featured researches published by David W. Thieltges.


Ecology Letters | 2008

Parasites in food webs: the ultimate missing links

Kevin D. Lafferty; Stefano Allesina; Matías Arim; Cherie J. Briggs; Giulio A. De Leo; Andrew P. Dobson; Jennifer A. Dunne; Pieter T. J. Johnson; Armand M. Kuris; David J. Marcogliese; Neo D. Martinez; Jane Memmott; Pablo A. Marquet; John P. McLaughlin; Eerin A. Mordecai; Mercedes Pascual; Robert Poulin; David W. Thieltges

Parasitism is the most common consumer strategy among organisms, yet only recently has there been a call for the inclusion of infectious disease agents in food webs. The value of this effort hinges on whether parasites affect food-web properties. Increasing evidence suggests that parasites have the potential to uniquely alter food-web topology in terms of chain length, connectance and robustness. In addition, parasites might affect food-web stability, interaction strength and energy flow. Food-web structure also affects infectious disease dynamics because parasites depend on the ecological networks in which they live. Empirically, incorporating parasites into food webs is straightforward. We may start with existing food webs and add parasites as nodes, or we may try to build food webs around systems for which we already have a good understanding of infectious processes. In the future, perhaps researchers will add parasites while they construct food webs. Less clear is how food-web theory can accommodate parasites. This is a deep and central problem in theoretical biology and applied mathematics. For instance, is representing parasites with complex life cycles as a single node equivalent to representing other species with ontogenetic niche shifts as a single node? Can parasitism fit into fundamental frameworks such as the niche model? Can we integrate infectious disease models into the emerging field of dynamic food-web modelling? Future progress will benefit from interdisciplinary collaborations between ecologists and infectious disease biologists.


The Journal of Experimental Biology | 2010

Diversity, decoys and the dilution effect: how ecological communities affect disease risk

Pieter T. J. Johnson; David W. Thieltges

SUMMARY Growing interest in ecology has recently focused on the hypothesis that community diversity can mediate infection levels and disease (‘dilution effect’). In turn, biodiversity loss — a widespread consequence of environmental change — can indirectly promote increases in disease, including those of medical and veterinary importance. While this work has focused primarily on correlational studies involving vector-borne microparasite diseases (e.g. Lyme disease, West Nile virus), we argue that parasites with complex life cycles (e.g. helminths, protists, myxosporeans and many fungi) offer an excellent additional model in which to experimentally address mechanistic questions underlying the dilution effect. Here, we unite recent ecological research on the dilution effect in microparasites with decades of parasitological research on the decoy effect in macroparasites to explore key questions surrounding the relationship between community structure and disease. We find consistent evidence that community diversity significantly alters parasite transmission and pathology under laboratory as well as natural conditions. Empirical examples and simple transmission models highlight the diversity of mechanisms through which such changes occur, typically involving predators, parasite decoys, low competency hosts or other parasites. However, the degree of transmission reduction varies among diluting species, parasite stage, and across spatial scales, challenging efforts to make quantitative, taxon-specific predictions about disease. Taken together, this synthesis highlights the broad link between community structure and disease while underscoring the importance of mitigating ongoing changes in biological communities owing to species introductions and extirpations.


Helgoland Marine Research | 2006

Are aliens threatening European aquatic coastal ecosystems

Karsten Reise; Sergej Olenin; David W. Thieltges

Inshore waters of European coasts have accumulated a high share of non-indigenous species, where a changeable palaeoenvironment has caused low diversity in indigenous biota. Also strongly transformed modern coastal ecosystems seem to assimilate whatever species have been introduced and tolerate the physical regime. Adding non-native species does not have any directional predetermined effects on recipient coastal ecosystems. The status of being a non-native rather refers to a position in evolutionary history than qualify as an ecological category with distinct and consistent properties. Effects of invaders vary between habitats and with the phase of invasion and also with shifting ambient conditions. Although aliens accelerate change in European coastal biota, we found no evidence that they generally impair biodiversity and ecosystem functioning. More often, invaders expand ecosystem functioning by adding new ecological traits, intensifying existing ones and increasing functional redundancy.


Trends in Ecology and Evolution | 2010

When parasites become prey: ecological and epidemiological significance of eating parasites

Pieter T. J. Johnson; Andrew P. Dobson; Kevin D. Lafferty; David J. Marcogliese; Jane Memmott; Sarah A. Orlofske; Robert Poulin; David W. Thieltges

Recent efforts to include parasites in food webs have drawn attention to a previously ignored facet of foraging ecology: parasites commonly function as prey within ecosystems. Because of the high productivity of parasites, their unique nutritional composition and their pathogenicity in hosts, their consumption affects both food-web topology and disease risk in humans and wildlife. Here, we evaluate the ecological, evolutionary and epidemiological significance of feeding on parasites, including concomitant predation, grooming, predation on free-living stages and intraguild predation. Combining empirical data and theoretical models, we show that consumption of parasites is neither rare nor accidental, and that it can sharply affect parasite transmission and food web properties. Broader consideration of predation on parasites will enhance our understanding of disease control, food web structure and energy transfer, and the evolution of complex life cycles.


Parasitology | 2008

The role of biotic factors in the transmission of free-living endohelminth stages

David W. Thieltges; K. T. Jensen; Robert Poulin

The transmission success of free-living larval stages of endohelminths is generally modulated by a variety of abiotic and biotic environmental factors. Whereas the role of abiotic factors (including anthropogenic pollutants) has been in focus in numerous studies and summarized in reviews, the role of biotic factors has received much less attention. Here, we review the existing body of literature from the fields of parasitology and ecology and recognize 6 different types of biotic factors with the potential to alter larval transmission processes. We found that experimental studies generally indicate strong effects of biotic factors, and the latter emerge as potentially important, underestimated determinants in the transmission ecology of free-living endohelminth stages. This implies that biodiversity, in general, should have significant effects on parasite transmission and population dynamics. These effects are likely to interact with natural abiotic factors and anthropogenic pollutants. Investigating the interplay of abiotic and biotic factors will not only be crucial for a thorough understanding of parasite transmission processes, but will also be a prerequisite to anticipate the effects of climate and other global changes on helminth parasites and their host communities.


PLOS Biology | 2013

Parasites Affect Food Web Structure Primarily through Increased Diversity and Complexity

Jennifer A. Dunne; Kevin D. Lafferty; Andrew P. Dobson; Ryan F. Hechinger; Armand M. Kuris; Neo D. Martinez; John P. McLaughlin; Kim N. Mouritsen; Robert Poulin; Karsten Reise; Daniel B. Stouffer; David W. Thieltges; Richard J. Williams; Claus Dieter Zander

Parasites primarily affect food web structure through changes to diversity and complexity. However, compared to free-living species, their life-history traits lead to more complex feeding niches and altered motifs.


Helgoland Marine Research | 2006

Wadden Sea mussel beds invaded by oysters and slipper limpets: competition or climate control?

Georg Nehls; Susanne Diederich; David W. Thieltges; Matthias Strasser

Introduced species are often considered to be a threat to residents, but not all reciprocal trends may reflect species interaction. In the northern German Wadden Sea, native mussel Mytilus edulis beds are declining and overgrown by introduced Pacific oysters Crassostrea gigas and slipper limpets Crepidula fornicata. We review the population development of the three species and analyse whether the invading species may be responsible for the decline of native mussels. The Pacific oyster predominately settles on mussel beds in the intertidal and the slipper limpet dominates around low water line. We compare the development of mussels and invaders in two subregions: mussel beds near the islands of Sylt and Amrum decreased both in the presence (Sylt) and absence (Amrum) of the two invading species and more detailed investigations could not confirm a causal relationship between the increasing invaders and decreasing mussel beds. There is evidence that the decline of mussel beds is mainly caused by failing spatfall possibly due to mild winters, whereas the increase in slipper limpets and oysters is facilitated by mild winters and warm summers, respectively. We conclude that changing species composition is a result of the climatic conditions in the last decade and that there is no evidence yet that the exotic species caused the decline of the natives. It remains an open question whether the species shift will continue and what the consequences for the native ecosystem will be.


Biological Invasions | 2009

Invaders interfere with native parasite–host interactions

David W. Thieltges; Karsten Reise; Katrin Prinz; K. Thomas Jensen

The introduction of species is of increasing concern as invaders often reduce the abundance of native species due to a variety of interactions like habitat engineering, predation and competition. A more subtle and not recognized effect of invaders on their recipient biota is their potential interference with native parasite–host interactions. Here, we experimentally demonstrate that two invasive molluscan filter-feeders of European coastal waters interfere with the transmission of free-living infective trematode larval stages and hereby mitigate the parasite burden of native mussels (Mytilus edulis). In laboratory mesocosm experiments, the presence of Pacific oysters (Crassostrea gigas) and American slipper limpets (Crepidula fornicata) reduced the parasite load in mussels by 65–77% and 89% in single and mixed species treatments, respectively. Both introduced species acted as decoys for the trematodes thus reducing the risk of hosts to become infected. This dilution effect was density-dependent with higher reductions at higher invader densities. Similar effects in a field experiment with artificial oyster beds suggest the observed dilution effect to be relevant in the field. As parasite infections have detrimental effects on the mussel hosts, the presence of the two invaders may elicit a beneficial effect on mussels. Our experiments indicate that introduced species alter native parasite–hosts systems thus extending the potential impacts of invaders beyond the usually perceived mechanisms.


Biological Invasions | 2006

Native Parasites Adopt Introduced Bivalves of the North Sea

Manuela Krakau; David W. Thieltges; Karsten Reise

Introduced species may have a competitive advantage over native species due to a lack of predators or pathogens. In the North Sea region, it has been assumed that no metazoan parasites are to be found in marine introduced species. In an attempt to test this assumption, we found native parasites in the introduced bivalves Crassostrea gigas and Ensis americanus with a prevalence of 35% and 80%, respectively, dominated by the trematode Renicola roscovita. When comparing these introduced species with native bivalves from the same localities, Mytilus edulis and Cerastoderma edule, trematode intensity was always lower in the introduced species. These findings have three major implications: (1) introduced bivalves are not free of detrimental parasites which raises the question whether introduced species have an advantage over native species after invasion, (2) introduced bivalves may divert parasite burdens providing a relief for native species and (3) they may affect parasite populations by influencing the fate of infectious stages, ending either in dead end hosts, not being consumed by potential final hosts or by adding new hosts. Future studies should consider these implications to arrive at a better understanding of the interplay between native parasites and introduced hosts.


Philosophical Transactions of the Royal Society B | 2011

The comparative ecology and biogeography of parasites

Robert Poulin; Boris R. Krasnov; David Mouillot; David W. Thieltges

Comparative ecology uses interspecific relationships among traits, while accounting for the phylogenetic non-independence of species, to uncover general evolutionary processes. Applied to biogeographic questions, it can be a powerful tool to explain the spatial distribution of organisms. Here, we review how comparative methods can elucidate biogeographic patterns and processes, using analyses of distributional data on parasites (fleas and helminths) as case studies. Methods exist to detect phylogenetic signals, i.e. the degree of phylogenetic dependence of a given character, and either to control for these signals in statistical analyses of interspecific data, or to measure their contribution to variance. Parasite–host interactions present a special case, as a given trait may be a parasite trait, a host trait or a property of the coevolved association rather than of one participant only. For some analyses, it is therefore necessary to correct simultaneously for both parasite phylogeny and host phylogeny, or to evaluate which has the greatest influence on trait expression. Using comparative approaches, we show that two fundamental properties of parasites, their niche breadth, i.e. host specificity, and the nature of their life cycle, can explain interspecific and latitudinal variation in the sizes of their geographical ranges, or rates of distance decay in the similarity of parasite communities. These findings illustrate the ways in which phylogenetically based comparative methods can contribute to biogeographic research.

Collaboration


Dive into the David W. Thieltges's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karsten Reise

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar

Manuela Krakau

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christian Buschbaum

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthias Strasser

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K. Mathias Wegner

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge