Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David W. Waite is active.

Publication


Featured researches published by David W. Waite.


Frontiers in Microbiology | 2014

Characterizing the avian gut microbiota: membership, driving influences, and potential function.

David W. Waite; Michael W. Taylor

Birds represent a diverse and evolutionarily successful lineage, occupying a wide range of niches throughout the world. Like all vertebrates, avians harbor diverse communities of microorganisms within their guts, which collectively fulfill important roles in providing the host with nutrition and protection from pathogens. Although many studies have investigated the role of particular microbes in the guts of avian species, there has been no attempt to unify the results of previous, sequence-based studies to examine the factors that shape the avian gut microbiota as a whole. In this study, we present the first meta-analysis of the avian gut microbiota, using 16S rRNA gene sequences obtained from a range of publicly available clone-library and amplicon pyrosequencing data. We investigate community membership and structure, as well as probe the roles of some of the key biological factors that influence the gut microbiota of other vertebrates, such as host phylogeny, location within the gut, diet, and association with humans. Our results indicate that, across avian studies, the microbiota demonstrates a similar phylum-level composition to that of mammals. Host bird species is the most important factor in determining community composition, although sampling site, diet, and captivity status also contribute. These analyses provide a first integrated look at the composition of the avian microbiota, and serve as a foundation for future studies in this area.


Frontiers in Microbiology | 2015

Evaluating variation in human gut microbiota profiles due to DNA extraction method and inter-subject differences

Brett Wagner Mackenzie; David W. Waite; Michael W. Taylor

The human gut contains dense and diverse microbial communities which have profound influences on human health. Gaining meaningful insights into these communities requires provision of high quality microbial nucleic acids from human fecal samples, as well as an understanding of the sources of variation and their impacts on the experimental model. We present here a systematic analysis of commonly used microbial DNA extraction methods, and identify significant sources of variation. Five extraction methods (Human Microbiome Project protocol, MoBio PowerSoil DNA Isolation Kit, QIAamp DNA Stool Mini Kit, ZR Fecal DNA MiniPrep, phenol:chloroform-based DNA isolation) were evaluated based on the following criteria: DNA yield, quality and integrity, and microbial community structure based on Illumina amplicon sequencing of the V4 region of bacterial and archaeal 16S rRNA genes. Our results indicate that the largest portion of variation within the model was attributed to differences between subjects (biological variation), with a smaller proportion of variation associated with DNA extraction method (technical variation) and intra-subject variation. A comprehensive understanding of the potential impact of technical variation on the human gut microbiota will help limit preventable bias, enabling more accurate diversity estimates.


Frontiers in Microbiology | 2015

Exploring the avian gut microbiota: current trends and future directions

David W. Waite; Michael W. Taylor

Birds represent a diverse and evolutionarily successful lineage, occupying a wide range of niches throughout the world. Like all vertebrates, avians harbor diverse communities of microorganisms within their guts, which collectively fulfill crucial roles in providing the host with nutrition and protection from pathogens. Across the field of avian microbiology knowledge is extremely uneven, with several species accounting for an overwhelming majority of all microbiological investigations. These include agriculturally important birds, such as chickens and turkeys, as well as birds of evolutionary or conservation interest. In our previous study we attempted the first meta-analysis of the avian gut microbiota, using 16S rRNA gene sequences obtained from a range of publicly available data sets. We have now extended our analysis to explore the microbiology of several key species in detail, to consider the avian microbiota within the context of what is known about other vertebrates, and to identify key areas of interest in avian microbiology for future study.


PLOS ONE | 2012

Gut microbiome of the critically endangered New Zealand parrot, the kakapo (Strigops habroptilus).

David W. Waite; Peter Deines; Michael W. Taylor

The kakapo, a parrot endemic to New Zealand, is currently the focus of intense research and conservation efforts with the aim of boosting its population above the current ‘critically endangered’ status. While virtually nothing is known about the microbiology of the kakapo, given the acknowledged importance of gut-associated microbes in vertebrate nutrition and pathogen defense, it should be of great conservation value to analyze the microbes associated with kakapo. Here we describe the first study of the bacterial communities that reside within the gastrointestinal tract (GIT) of both juvenile and adult kakapo. Samples from along the GIT, taken from the choana (≈throat), crop and faeces, were subjected to 16 S rRNA gene library analysis. Phylogenetic analysis of >1000 16 S rRNA gene clones, derived from six birds, revealed low phylum-level diversity, consisting almost exclusively of Firmicutes (including lactic acid bacteria) and Gammaproteobacteria. The relative proportions of Firmicutes and Gammaproteobacteria were highly consistent among individual juveniles, irrespective of sampling location, but differed markedly among adult birds. Diversity at a finer phylogenetic resolution (i.e. operational taxonomic units (OTUs) of 99% sequence identity) was also low in all samples, with only one or two OTUs dominating each sample. These data represent the first analysis of the bacterial communities associated with the kakapo GIT, providing a baseline for further microbiological study, and facilitating conservation efforts for this unique bird.


Frontiers in Microbiology | 2017

Comparative Genomic Analysis of the Class Epsilonproteobacteria and Proposed Reclassification to Epsilonbacteraeota (phyl. nov.)

David W. Waite; Inka Vanwonterghem; Christian Rinke; Donovan H. Parks; Ying Zhang; Ken Takai; Stefan M. Sievert; Joerg Simon; Barbara J. Campbell; Tanja Woyke; Martin G. Klotz; Philip Hugenholtz

The Epsilonproteobacteria is the fifth validly described class of the phylum Proteobacteria, known primarily for clinical relevance and for chemolithotrophy in various terrestrial and marine environments, including deep-sea hydrothermal vents. As 16S rRNA gene repositories have expanded and protein marker analysis become more common, the phylogenetic placement of this class has become less certain. A number of recent analyses of the bacterial tree of life using both 16S rRNA and concatenated marker gene analyses have failed to recover the Epsilonproteobacteria as monophyletic with all other classes of Proteobacteria. In order to address this issue, we investigated the phylogenetic placement of this class in the bacterial domain using 16S and 23S rRNA genes, as well as 120 single-copy marker proteins. Single- and concatenated-marker trees were created using a data set of 4,170 bacterial representatives, including 98 Epsilonproteobacteria. Phylogenies were inferred under a variety of tree building methods, with sequential jackknifing of outgroup phyla to ensure robustness of phylogenetic affiliations under differing combinations of bacterial genomes. Based on the assessment of nearly 300 phylogenetic tree topologies, we conclude that the continued inclusion of Epsilonproteobacteria within the Proteobacteria is not warranted, and that this group should be reassigned to a novel phylum for which we propose the name Epsilonbacteraeota (phyl. nov.). We further recommend the reclassification of the order Desulfurellales (Deltaproteobacteria) to a novel class within this phylum and a number of subordinate changes to ensure consistency with the genome-based phylogeny. Phylogenomic analysis of 658 genomes belonging to the newly proposed Epsilonbacteraeota suggests that the ancestor of this phylum was an autotrophic, motile, thermophilic chemolithotroph that likely assimilated nitrogen from ammonium taken up from the environment or generated from environmental nitrate and nitrite by employing a variety of functional redox modules. The emergence of chemoorganoheterotrophic lifestyles in several Epsilonbacteraeota families is the result of multiple independent losses of various ancestral chemolithoautotrophic pathways. Our proposed reclassification of this group resolves an important anomaly in bacterial systematics and ensures that the taxonomy of Proteobacteria remains robust, specifically as genome-based taxonomies become more common.


Environmental Microbiology | 2017

Bacterial community collapse: A meta-analysis of the sinonasal microbiota in chronic rhinosinusitis

Brett Wagner Mackenzie; David W. Waite; Michael Hoggard; Richard Douglas; Michael W. Taylor; Kristi Biswas

Chronic rhinosinusitis (CRS) is a common, debilitating condition characterized by long-term inflammation of the nasal cavity and paranasal sinuses. The role of the sinonasal bacteria in CRS is unclear. We conducted a meta-analysis combining and reanalysing published bacterial 16S rRNA sequence data to explore differences in sinonasal bacterial community composition and predicted function between healthy and CRS affected subjects. The results identify the most abundant bacteria across all subjects as Staphylococcus, Propionibacterium, Corynebacterium, Streptococcus and an unclassified lineage of Actinobacteria. The meta-analysis results suggest that the bacterial community associated with CRS patients is dysbiotic and ecological networks fostering healthy communities are fragmented. Increased dispersion of bacterial communities, significantly lower bacterial diversity, and increased abundance of members of the genus Corynebacterium are associated with CRS. Increased relative abundance and diversity of other members belonging to the phylum Actinobacteria and members from the genera Propionibacterium differentiated healthy sinuses from those that were chronically inflamed. Removal of Burkholderia and Propionibacterium phylotypes from the healthy community dataset was correlated with a significant increase in network fragmentation. This meta-analysis highlights the potential importance of the genera Burkholderia and Propionibacterium as gatekeepers, whose presence may be important in maintaining a stable sinonasal bacterial community.


Applied and Environmental Microbiology | 2014

Influence of Hand Rearing and Bird Age on the Fecal Microbiota of the Critically Endangered Kakapo

David W. Waite; Daryl K. Eason; Michael W. Taylor

ABSTRACT The critically endangered New Zealand parrot, the kakapo, is subject to an intensive management regime aiming to maintain bird health and boost population size. Newly hatched kakapo chicks are subjected to human intervention and are frequently placed in captivity throughout their formative months. Hand rearing greatly reduces mortality among juveniles, but the potential long-term impact on the kakapo gut microbiota is uncertain. To track development of the kakapo gut microbiota, fecal samples from healthy, prefledged juvenile kakapos, as well as from unrelated adults, were analyzed by using 16S rRNA gene amplicon pyrosequencing. Following the original sampling, juvenile kakapos underwent a period of captivity, so further sampling during and after captivity aimed to elucidate the impact of captivity on the juvenile gut microbiota. Variation in the fecal microbiota over a year was also investigated, with resampling of the original juvenile population. Amplicon pyrosequencing revealed a juvenile fecal microbiota enriched with particular lactic acid bacteria compared to the microbiota of adults, although the overall community structure did not differ significantly among kakapos of different ages. The abundance of key operational taxonomic units (OTUs) was correlated with antibiotic treatment and captivity, although the importance of these factors could not be proven unequivocally within the bounds of this study. Finally, the microbial community structure of juvenile and adult kakapos changed over time, reinforcing the need for continual monitoring of the microbiota as part of regular health screening.


PLOS ONE | 2016

Integrity of the human faecal microbiota following long-term sample storage

Elahe Kia; Brett Wagner Mackenzie; Danielle Middleton; Anna Lau; David W. Waite; Gillian Lewis; Yih-Kai Chan; Marta Silvestre; Garth J. S. Cooper; Sally D. Poppitt; Michael W. Taylor

In studies of the human microbiome, faecal samples are frequently used as a non-invasive proxy for the study of the intestinal microbiota. To obtain reliable insights, the need for bacterial DNA of high quality and integrity following appropriate faecal sample collection and preservation steps is paramount. In a study of dietary mineral balance in the context of type 2 diabetes (T2D), faecal samples were collected from healthy and T2D individuals throughout a 13-day residential trial. These samples were freeze-dried, then stored mostly at -20°C from the trial date in 2000/2001 until the current research in 2014. Given the relative antiquity of these samples (~14 years), we sought to evaluate DNA quality and comparability to freshly collected human faecal samples. Following the extraction of bacterial DNA, gel electrophoresis indicated that our DNA extracts were more sheared than extracts made from freshly collected faecal samples, but still of sufficiently high molecular weight to support amplicon-based studies. Likewise, spectrophotometric assessment of extracts revealed that they were of high quality and quantity. A subset of bacterial 16S rRNA gene amplicons were sequenced using Illumina MiSeq and compared against publicly available sequence data representing a similar cohort analysed by the American Gut Project (AGP). Notably, our bacterial community profiles were highly consistent with those from the AGP data. Our results suggest that when faecal specimens are stored appropriately, the microbial profiles are preserved and robust to extended storage periods.


Archives of Microbiology | 2015

Microbial community structure in the gut of the New Zealand insect Auckland tree weta (Hemideina thoracica)

David W. Waite; Melissa Dsouza; Kristi Biswas; Darren F. Ward; Peter Deines; Michael W. Taylor

The endemic New Zealand weta is an enigmatic insect. Although the insect is well known by its distinctive name, considerable size, and morphology, many basic aspects of weta biology remain unknown. Here, we employed cultivation-independent enumeration techniques and rRNA gene sequencing to investigate the gut microbiota of the Auckland tree weta (Hemideina thoracica). Fluorescence in situ hybridisation performed on different sections of the gut revealed a bacterial community of fluctuating density, while rRNA gene-targeted amplicon pyrosequencing revealed the presence of a microbial community containing high bacterial diversity, but an apparent absence of archaea. Bacteria were further studied using full-length 16S rRNA gene sequences, with statistical testing of bacterial community membership against publicly available termite- and cockroach-derived sequences, revealing that the weta gut microbiota is similar to that of cockroaches. These data represent the first analysis of the weta microbiota and provide initial insights into the potential function of these microorganisms.


bioRxiv | 2018

A proposal for a standardized bacterial taxonomy based on genome phylogeny

Donovan H. Parks; Maria Chuvochina; David W. Waite; Christian Rinke; Adam Skarshewski; Pierre-Alain Chaumeil; Philip Hugenholtz

Taxonomy is a fundamental organizing principle of biology, which ideally should be based on evolutionary relationships. Microbial taxonomy has been greatly restricted by the inability to obtain most microorganisms in pure culture and, to a lesser degree, the historical use of phenotypic properties as the basis for classification. However, we are now at the point of obtaining genome sequences broadly representative of microbial diversity by using culture-independent techniques, which provide the opportunity to develop a comprehensive genome-based taxonomy. Here we propose a standardized bacterial taxonomy based on a concatenated protein phylogeny that conservatively removes polyphyletic groups and normalizes ranks based on relative evolutionary divergence. From 94,759 bacterial genomes, 99 phyla are described including six major normalized monophyletic units from the subdivision of the Proteobacteria, and amalgamation of the Candidate Phyla Radiation into the single phylum Patescibacteria. In total, 73% of taxa had one or more changes to their existing taxonomy.

Collaboration


Dive into the David W. Waite's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sherly George

Ministry for Primary Industries

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dongmei Li

Ministry for Primary Industries

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge