David Whitmore
University College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David Whitmore.
Nature | 2000
David Whitmore; Nicholas S. Foulkes; Paolo Sassone-Corsi
The expression of clock genes in vertebrates is widespread and not restricted to classical clock structures. The expression of the Clock gene in zebrafish shows a strong circadian oscillation in many tissues in vivo and in culture, showing that endogenous oscillators exist in peripheral organs. A defining feature of circadian clocks is that they can be set or entrained to local time, usually by the environmental light–dark cycle. An important question is whether peripheral oscillators are entrained to local time by signals from central pacemakers such as the eyes or are themselves directly light-responsive. Here we show that the peripheral organ clocks of zebrafish are set by light–dark cycles in culture. We also show that a zebrafish-derived cell line contains a circadian oscillator, which is also directly light entrained.
Current Biology | 2003
Marcus P.S. Dekens; Cristina Santoriello; Daniela Vallone; Gabriele Grassi; David Whitmore; Nicholas S. Foulkes
The timing of cell proliferation is a key factor contributing to the regulation of normal growth. Daily rhythms of cell cycle progression have been documented in a wide range of organisms. However, little is known about how environmental, humoral, and cell-autonomous factors contribute to these rhythms. Here, we demonstrate that light plays a key role in cell cycle regulation in the zebrafish. Exposure of larvae to light-dark (LD) cycles causes a range of different cell types to enter S phase predominantly at the end of the day. When larvae are raised in constant darkness (DD), a low level of arrhythmic S phase is observed. In addition, light-entrained cell cycle rhythms persist for several days after transfer to DD, both observations pointing to the involvement of the circadian clock. We show that the number of LD cycles experienced is essential for establishing this rhythm during larval development. Furthermore, we reveal that the same phenomenon exists in a zebrafish cell line. This represents the first example of a vertebrate cell culture system where circadian rhythms of the cell cycle are observed. Thus, we implicate the cell-autonomous circadian clock in the regulation of the vertebrate cell cycle by light.
Proceedings of the National Academy of Sciences of the United States of America | 2004
Daniela Vallone; Srinivas Babu Gondi; David Whitmore; Nicholas S. Foulkes
In most organisms, light plays a key role in the synchronization of the circadian timing system with the environmental day–night cycle. Light pulses that phase-shift the circadian clock also induce the expression of period (per) genes in vertebrates. Here, we report the cloning of a zebrafish per gene, zfper4, which is remarkable in being repressed by light. We have developed an in vivo luciferase reporter assay for this gene in cells that contain a light-entrainable clock. High-definition bioluminescence traces have enabled us to accurately measure phase-shifting of the clock by light. We have also exploited this model to study how four E-box elements in the zfper4 promoter regulate expression. Mutagenesis reveals that the integrity of these four E-boxes is crucial for maintaining low basal expression together with robust rhythmicity and repression by light. Importantly, in the context of a minimal heterologous promoter, the E-box elements also direct a robust circadian rhythm of expression that is significantly phase-advanced compared with the original zfper4 promoter and lacks the light-repression property. Thus, these results reveal flexibility in the phase and light responsiveness of E-box-directed rhythmic expression, depending on the promoter context.
Nature Cell Biology | 2005
Amanda-Jayne F. Carr; David Whitmore
Zebrafish tissues and cell lines contain circadian clocks that respond directly to light. Using fluorescence-activated cell sorting, we have isolated clonal cell lines that contain the reporter construct, zfperiod4-luciferase. Bioluminescent assays show that oscillations within cell populations are dampened in constant darkness. However, single-cell imaging reveals that individual cells continue to oscillate, but with widely distributed phases and marked stochastic fluctuations in free-running period. Because these cells are directly light responsive, we can easily follow phase shifts to single light pulses. Here we show that light acts to reset desynchronous cellular oscillations to a common phase, as well as stabilize the subsequent free-running period.
Proceedings of the National Academy of Sciences of the United States of America | 2007
T. Katherine Tamai; Lucy C. Young; David Whitmore
Zebrafish tissues and cells have the unusual feature of not only containing a circadian clock, but also being directly light-responsive. Several zebrafish genes are induced by light, but little is known about their role in clock resetting or the mechanism by which this might occur. Here we show that Cryptochrome 1a (Cry1a) plays a key role in light entrainment of the zebrafish clock. Intensity and phase response curves reveal a strong correlation between light induction of Cry1a and clock resetting. Overexpression studies show that Cry1a acts as a potent repressor of clock function and mimics the effect of constant light to “stop” the circadian oscillator. Yeast two-hybrid analysis demonstrates that the Cry1a protein interacts directly with specific regions of core clock components, CLOCK and BMAL, blocking their ability to fully dimerize and transactivate downstream targets, providing a likely mechanism for clock resetting. A comparison of entrainment of zebrafish cells to complete versus skeleton photoperiods reveals that clock phase is identical under these two conditions. However, the amplitude of the core clock oscillation is much higher on a complete photoperiod, as are the levels of light-induced Cry1a. We believe that Cry1a acts on the core clock machinery in both a continuous and discrete fashion, leading not only to entrainment, but also to the establishment of a high-amplitude rhythm and even stopping of the clock under long photoperiods.
Molecular Brain Research | 2002
James Bellingham; David Whitmore; Alisdair R Philp; Dominic J. Wells; Russell G. Foster
Photoreception is best understood in retinal rods and cones, but it is not confined to these cells. In non-mammals, intrinsically photosensitive cells have been identified within several structures including the pineal, hypothalamus and skin. More recently novel light sensitive cells have been identified in the inner/basal retina of both teleosts and rodents. Melanopsin has been proposed as the photopigment mediating many of these non-rod, non-cone responses to light. However, much about the melanopsin gene family remains to be clarified including their potential role as photopigments, and taxonomic distribution. We have isolated the first orthologue of melanopsin from a teleost fish and show expression of this gene in a sub-set of retinal horizontal cells (type B). Zebrafish melanopsin, and orthologues of this gene, differ markedly from the vertebrate photopigment opsins. The putative counterion is not a glutamate but a tyrosine, the putative G-protein binding domain in the third cytoplasmic loop is not conserved, and they show low levels of amino acid identity (approximately 27%) to both the known photopigment opsins and to other members of the melanopsin family. Mouse melanopsin is only 58% identical to Xenopus, and 68% identical to zebrafish. By contrast, the photosensory opsin families show approximately 75% conservation. On the basis of their structure, genomic organisation, discrete evolutionary lineage, and their co-expression with other opsins, the melanopins are not obvious photosensory opsins. They might represent a separate branch of photopigment evolution in the vertebrates or they may have a non-direct photosensory function, perhaps as a photoisomerase, in non-rod, non-cone light detection.
Molecular Brain Research | 2003
Paraskevi Moutsaki; David Whitmore; James Bellingham; Katsuhiko Sakamoto; Zoë K. David-Gray; Russell G. Foster
Isolated organs and cell lines from zebrafish exhibit circadian oscillations in clock gene expression that can be entrained to a 24-h light/dark cycle. The mechanism underlying this cellular photosensitivity is unknown. We report the identification of a novel opsin family, tmt-opsin, that has a genomic structure characteristic of vertebrate photopigments, an amino acid identity equivalent to the known photopigment opsins, and the essential residues required for photopigment function. Significantly, tmt-opsin is expressed in a wide variety of neural and non-neural tissues, including a zebrafish embryonic cell line that exhibits a light entrainable clock. Collectively the data suggest that tmt-opsin is a strong candidate for the photic regulation of zebrafish peripheral clocks.
The EMBO Journal | 2008
Marcus P.S. Dekens; David Whitmore
On the first day of development a circadian clock becomes functional in the zebrafish embryo. How this oscillator is set in motion remains unclear. We demonstrate that zygotic period1 transcription begins independent of light exposure. Pooled embryos maintained in darkness and under constant temperature show elevated non‐oscillating levels of period1 expression. Consequently, there is no maternal effect or developmental event that sets the phase of the circadian clock. Analysis of period1 transcription, at the cellular level in the absence of environmental stimuli, reveals oscillations in cells that are asynchronous within the embryo. Demonstrating an autonomous onset to rhythmic period1 expression. Transcription of clock1 and bmal1 is rhythmic in the adult, but constant during development in light‐entrained embryos. Transient expression of dominant‐negative ΔCLOCK blocks period1 transcription, thus showing that endogenous CLOCK is essential for the transcriptional regulation of period1 in the embryo. We demonstrate a default mechanism in the embryo that initiates the autonomous onset of the circadian clock. This embryonic clock is differentially regulated from that in the adult, the transition coinciding with the appearance of several clock output processes.
Current Biology | 2004
T. Katherine Tamai; Varut Vardhanabhuti; Nicholas S. Foulkes; David Whitmore
Classically, organization of the vertebrate circadian clock was seen as highly centralized in specific neural structures. Over recent years, this view has been transformed dramatically toward a more decentralized model with a number of distinct peripheral tissue clocks [1,2]. This is particularly true of zebrafish, where adult tissues contain autonomous circadian oscillators, which respond directly to light [3,4]. Cell lines derived from 24 hour old zebrafish embryos show the same circadian and light responsiveness as adult tissue [4,5].
Biological Chemistry | 2000
David Whitmore; Nicolas Cermakian; Claudia Crosio; Nicholas S. Foulkes; Matthew P. Pando; Zdenka Travnickova; Paolo Sassone-Corsi
Abstract The vertebrate circadian clock was thought to be highly localized to specific anatomical structures: the mammalian suprachiasmatic nucleus (SCN), and the retina and pineal gland in lower vertebrates. However, recent findings in the zebrafish, rat and in cultured cells have suggested that the vertebrate circadian timing system may in fact be highly distributed, with most if not all cells containing a clock. Our understanding of the clock mechanism has progressed extensively through the use of mutant screening and forward genetic approaches. The first vertebrate clock gene was identified only a few years ago in the mouse by such an approach. More recently, using a syntenic comparative genetic approach, the molecular basis of the the tau mutation in the hamster was determined. The tau gene in the hamster appears to encode casein kinase 1 epsilon, a protein previously shown to be important for PER protein turnover in the Drosophila circadian system. A number of additional clock genes have now been described. These proteins appear to play central roles in the transcription-translation negative feedback loop responsible for clock function. Post-translational modification, protein dimerization and nuclear transport all appear to be essential features of how clocks are thought to tick.