Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David Willey is active.

Publication


Featured researches published by David Willey.


PLOS Biology | 2003

The genome sequence of Caenorhabditis briggsae: A platform for comparative genomics

Lincoln Stein; Zhirong Bao; Darin Blasiar; Thomas Blumenthal; Michael R. Brent; Nansheng Chen; Asif T. Chinwalla; Laura Clarke; Chris Clee; Avril Coghlan; Alan Coulson; Peter D'Eustachio; David H. A. Fitch; Lucinda A. Fulton; Robert Fulton; Sam Griffiths-Jones; Todd W. Harris; LaDeana W. Hillier; Ravi S. Kamath; Patricia E. Kuwabara; Elaine R. Mardis; Marco A. Marra; Tracie L. Miner; Patrick Minx; James C. Mullikin; Robert W. Plumb; Jane Rogers; Jacqueline E. Schein; Marc Sohrmann; John Spieth

The soil nematodes Caenorhabditis briggsae and Caenorhabditis elegans diverged from a common ancestor roughly 100 million years ago and yet are almost indistinguishable by eye. They have the same chromosome number and genome sizes, and they occupy the same ecological niche. To explore the basis for this striking conservation of structure and function, we have sequenced the C. briggsae genome to a high-quality draft stage and compared it to the finished C. elegans sequence. We predict approximately 19,500 protein-coding genes in the C. briggsae genome, roughly the same as in C. elegans. Of these, 12,200 have clear C. elegans orthologs, a further 6,500 have one or more clearly detectable C. elegans homologs, and approximately 800 C. briggsae genes have no detectable matches in C. elegans. Almost all of the noncoding RNAs (ncRNAs) known are shared between the two species. The two genomes exhibit extensive colinearity, and the rate of divergence appears to be higher in the chromosomal arms than in the centers. Operons, a distinctive feature of C. elegans, are highly conserved in C. briggsae, with the arrangement of genes being preserved in 96% of cases. The difference in size between the C. briggsae (estimated at approximately 104 Mbp) and C. elegans (100.3 Mbp) genomes is almost entirely due to repetitive sequence, which accounts for 22.4% of the C. briggsae genome in contrast to 16.5% of the C. elegans genome. Few, if any, repeat families are shared, suggesting that most were acquired after the two species diverged or are undergoing rapid evolution. Coclustering the C. elegans and C. briggsae proteins reveals 2,169 protein families of two or more members. Most of these are shared between the two species, but some appear to be expanding or contracting, and there seem to be as many as several hundred novel C. briggsae gene families. The C. briggsae draft sequence will greatly improve the annotation of the C. elegans genome. Based on similarity to C. briggsae, we found strong evidence for 1,300 new C. elegans genes. In addition, comparisons of the two genomes will help to understand the evolutionary forces that mold nematode genomes.


PLOS Pathogens | 2009

Genomic evidence for the evolution of Streptococcus equi : host restriction, increased virulence, and genetic exchange with human pathogens

Matthew T. G. Holden; Zoe Heather; R. Paillot; Karen F. Steward; K. Webb; Fern Ainslie; Thibaud Jourdan; Nathalie Bason; Nancy Holroyd; Karen Mungall; Michael A. Quail; Mandy Sanders; Mark Simmonds; David Willey; Karen Brooks; David M. Aanensen; Brian G. Spratt; Keith A. Jolley; Martin C. J. Maiden; Michael A. Kehoe; N. Chanter; Stephen D. Bentley; Carl Robinson; Duncan J. Maskell; Julian Parkhill; Andrew S. Waller

The continued evolution of bacterial pathogens has major implications for both human and animal disease, but the exchange of genetic material between host-restricted pathogens is rarely considered. Streptococcus equi subspecies equi (S. equi) is a host-restricted pathogen of horses that has evolved from the zoonotic pathogen Streptococcus equi subspecies zooepidemicus (S. zooepidemicus). These pathogens share approximately 80% genome sequence identity with the important human pathogen Streptococcus pyogenes. We sequenced and compared the genomes of S. equi 4047 and S. zooepidemicus H70 and screened S. equi and S. zooepidemicus strains from around the world to uncover evidence of the genetic events that have shaped the evolution of the S. equi genome and led to its emergence as a host-restricted pathogen. Our analysis provides evidence of functional loss due to mutation and deletion, coupled with pathogenic specialization through the acquisition of bacteriophage encoding a phospholipase A2 toxin, and four superantigens, and an integrative conjugative element carrying a novel iron acquisition system with similarity to the high pathogenicity island of Yersinia pestis. We also highlight that S. equi, S. zooepidemicus, and S. pyogenes share a common phage pool that enhances cross-species pathogen evolution. We conclude that the complex interplay of functional loss, pathogenic specialization, and genetic exchange between S. equi, S. zooepidemicus, and S. pyogenes continues to influence the evolution of these important streptococci.


Nature | 2000

An SNP map of human chromosome 22.

James C. Mullikin; Sarah Hunt; Charlotte G. Cole; Beverley Mortimore; Catherine M. Rice; J. Burton; L. H. Matthews; R. Pavitt; R. W. Plumb; Sarah Sims; R. M. R. Ainscough; J. Attwood; J. M. Bailey; K. Barlow; R. M. M. Bruskiewich; P. N. Butcher; Nigel P. Carter; Yuan Chen; C. M. Clee; Penny Coggill; J. Davies; Robert Davies; E. Dawson; M. D. Francis; A. A. Joy; R. G. Lamble; Cordelia Langford; J. Macarthy; V. Mall; A. Moreland

The human genome sequence will provide a reference for measuring DNA sequence variation in human populations. Sequence variants are responsible for the genetic component of individuality, including complex characteristics such as disease susceptibility and drug response. Most sequence variants are single nucleotide polymorphisms (SNPs), where two alternate bases occur at one position. Comparison of any two genomes reveals around 1 SNP per kilobase. A sufficiently dense map of SNPs would allow the detection of sequence variants responsible for particular characteristics on the basis that they are associated with a specific SNP allele. Here we have evaluated large-scale sequencing approaches to obtaining SNPs, and have constructed a map of 2,730 SNPs on human chromosome 22. Most of the SNPs are within 25 kilobases of a transcribed exon, and are valuable for association studies. We have scaled up the process, detecting over 65,000 SNPs in the genome as part of The SNP Consortium programme, which is on target to build a map of 1 SNP every 5 kilobases that is integrated with the human genome sequence and that is freely available in the public domain.


Genome Biology | 2004

Origins of chromosomal rearrangement hotspots in the human genome: evidence from the AZFa deletion hotspots

David Willey; Lucy Matthews; Syed Sufyan Hussain

BackgroundThe origins of the recombination hotspots that are a common feature of both allelic and non-allelic homologous recombination in the human genome are poorly understood. We have investigated, by comparative sequencing, the evolution of two hotspots of non-allelic homologous recombination on the Y chromosome that lie within paralogous sequences known to sponsor deletions resulting in male infertility.ResultsThese recombination hotspots are characterized by signatures of concerted evolution, which indicate that gene conversion between paralogs has been predominant in shaping their recent evolution. By contrast, the paralogous sequences that surround the hotspots exhibit little evidence of gene conversion. A second feature of these rearrangement hotspots is the extreme interspecific sequence divergence (around 2.5%) that places them among the most divergent orthologous sequences between humans and chimpanzees.ConclusionsSeveral hominid-specific gene conversion events have rendered these hotspots better substrates for chromosomal rearrangements in humans than in chimpanzees or gorillas. Monte Carlo simulations of sequence evolution suggest that extreme sequence divergence is a direct consequence of gene conversion between paralogs. We propose that the coincidence of signatures of concerted evolution and recurrent breakpoints of chromosomal rearrangement (mapped at the sequence level) may enable the identification of putative rearrangement hotspots from analysis of comparative sequences from great apes.


PLOS Pathogens | 2011

Citrobacter rodentium is an unstable pathogen showing evidence of significant genomic flux.

Nicola K. Petty; Theresa Feltwell; Derek Pickard; Simon Clare; Ana Luisa Toribio; Maria Fookes; Kevin Roberts; Rita E. Monson; Satheesh Nair; Robert A. Kingsley; Richard Bulgin; Siouxsie Wiles; David Goulding; Thomas M. Keane; Craig Corton; Nicola Lennard; David Harris; David Willey; Richard Rance; Lu Yu; Jyoti S. Choudhary; Carol Churcher; Michael A. Quail; Julian Parkhill; Gad Frankel; Gordon Dougan; George P. C. Salmond; Nicholas R. Thomson

Citrobacter rodentium is a natural mouse pathogen that causes attaching and effacing (A/E) lesions. It shares a common virulence strategy with the clinically significant human A/E pathogens enteropathogenic E. coli (EPEC) and enterohaemorrhagic E. coli (EHEC) and is widely used to model this route of pathogenesis. We previously reported the complete genome sequence of C. rodentium ICC168, where we found that the genome displayed many characteristics of a newly evolved pathogen. In this study, through PFGE, sequencing of isolates showing variation, whole genome transcriptome analysis and examination of the mobile genetic elements, we found that, consistent with our previous hypothesis, the genome of C. rodentium is unstable as a result of repeat-mediated, large-scale genome recombination and because of active transposition of mobile genetic elements such as the prophages. We sequenced an additional C. rodentium strain, EX-33, to reveal that the reference strain ICC168 is representative of the species and that most of the inactivating mutations were common to both isolates and likely to have occurred early on in the evolution of this pathogen. We draw parallels with the evolution of other bacterial pathogens and conclude that C. rodentium is a recently evolved pathogen that may have emerged alongside the development of inbred mice as a model for human disease.


Genome Biology | 2008

Finishing the finished human chromosome 22 sequence

Charlotte G. Cole; Owen T McCann; John E. Collins; K. Oliver; David Willey; Susan M. Gribble; Fengtang Yang; Karen McLaren; Jane Rogers; Zemin Ning; David Beare; Ian Dunham

BackgroundAlthough the human genome sequence was declared complete in 2004, the sequence was interrupted by 341 gaps of which 308 lay in an estimated approximately 28 Mb of euchromatin. While these gaps constitute only approximately 1% of the sequence, knowledge of the full complement of human genes and regulatory elements is incomplete without their sequences.ResultsWe have used a combination of conventional chromosome walking (aided by the availability of end sequences) in fosmid and bacterial artificial chromosome (BAC) libraries, whole chromosome shotgun sequencing, comparative genome analysis and long PCR to finish 8 of the 11 gaps in the initial chromosome 22 sequence. In addition, we have patched four regions of the initial sequence where the original clones were found to be deleted, or contained a deletion allele of a known gene, with a further 126 kb of new sequence. Over 1.018 Mb of new sequence has been generated to extend into and close the gaps, and we have annotated 16 new or extended gene structures and one pseudogene.ConclusionThus, we have made significant progress to completing the sequence of the euchromatic regions of human chromosome 22 using a combination of detailed approaches. Our experience suggests that substantial work remains to close the outstanding gaps in the human genome sequence.

Collaboration


Dive into the David Willey's collaboration.

Top Co-Authors

Avatar

Charlotte G. Cole

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Jane Rogers

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Julian Parkhill

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Michael A. Quail

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan Coulson

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Ana Luisa Toribio

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Avril Coghlan

Wellcome Trust Sanger Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge