Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David Zagzag is active.

Publication


Featured researches published by David Zagzag.


Nature | 2002

Prediction of central nervous system embryonal tumour outcome based on gene expression

Scott L. Pomeroy; Pablo Tamayo; Michelle Gaasenbeek; Lisa Marie Sturla; Michael Angelo; Margaret McLaughlin; John Kim; Liliana Goumnerova; Peter McL. Black; Ching Lau; Jeffrey C. Allen; David Zagzag; James M. Olson; Tom Curran; Jaclyn A. Biegel; Tomaso Poggio; Shayan Mukherjee; Ryan Rifkin; Gustavo Stolovitzky; David N. Louis; Jill P. Mesirov; Eric S. Lander; Todd R. Golub

Embryonal tumours of the central nervous system (CNS) represent a heterogeneous group of tumours about which little is known biologically, and whose diagnosis, on the basis of morphologic appearance alone, is controversial. Medulloblastomas, for example, are the most common malignant brain tumour of childhood, but their pathogenesis is unknown, their relationship to other embryonal CNS tumours is debated, and patients’ response to therapy is difficult to predict. We approached these problems by developing a classification system based on DNA microarray gene expression data derived from 99 patient samples. Here we demonstrate that medulloblastomas are molecularly distinct from other brain tumours including primitive neuroectodermal tumours (PNETs), atypical teratoid/rhabdoid tumours (AT/RTs) and malignant gliomas. Previously unrecognized evidence supporting the derivation of medulloblastomas from cerebellar granule cells through activation of the Sonic Hedgehog (SHH) pathway was also revealed. We show further that the clinical outcome of children with medulloblastomas is highly predictable on the basis of the gene expression profiles of their tumours at diagnosis.


Nature | 1999

Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts

David Lyden; Alison Z. Young; David Zagzag; Wei Yan; William L. Gerald; Richard J. O'Reilly; Bernhard L. Bader; Richard O. Hynes; Yuan Zhuang; Katia Manova; Robert Benezra

Id proteins may control cell differentiation by interfering with DNA binding of transcription factors. Here we show that targeted disruption of the dominant negative helix–loop–helix proteins Id1 and Id3 in mice results in premature withdrawal of neuroblasts from the cell cycle and expression of neural-specific differentiation markers. The Id1–Id3 double knockout mice also display vascular malformations in the forebrain and an absence of branching and sprouting of blood vessels into the neuroectoderm. As angiogenesis both in the brain and in tumours requires invasion of avascular tissue by endothelial cells, we examined the Id knockout mice for their ability to support the growth of tumour xenografts. Three different tumours failed to grow and/or metastasize in Id1+/-Id3-/- mice, and any tumour growth present showed poor vascularization and extensive necrosis. Thus, the Id genes are required to maintain the timing of neuronal differentiation in the embryo and invasiveness of the vasculature. Because the Id genes are expressed at very low levels in adults, they make attractive new targets for anti-angiogenic drug design.


Cancer | 2000

Expression of hypoxia‐inducible factor 1α in brain tumors

David Zagzag; Hua Zhong; Joanne M. Scalzitti; Erik Laughner; Jonathan W. Simons; Gregg L. Semenza

Hypoxia inducible factor‐1 (HIF‐1) plays a critical role in angiogenesis during vascular development. The authors tested the hypothesis that HIF‐1 expression correlates with progression and angiogenesis in brain tumors.


Science | 2012

Transforming Fusions of FGFR and TACC Genes in Human Glioblastoma

Devendra Singh; Joseph Chan; Pietro Zoppoli; Francesco Niola; Ryan J. Sullivan; Angelica Castano; Eric Minwei Liu; Jonathan Reichel; Paola Porrati; Serena Pellegatta; Kunlong Qiu; Zhibo Gao; Michele Ceccarelli; Riccardo Riccardi; Daniel J. Brat; Abhijit Guha; Kenneth D. Aldape; John G. Golfinos; David Zagzag; Tom Mikkelsen; Gaetano Finocchiaro; Anna Lasorella; Raul Rabadan; Antonio Iavarone

Oncogenic TACC-tics Human cancers exhibit many types of genomic rearrangements—including some that juxtapose sequences from two unrelated genes—thereby creating fusion proteins with oncogenic activity. Functional analysis of these fusion genes can provide mechanistic insights into tumorigenesis and potentially lead to effective drugs, as famously illustrated by the BCR-ABL gene in chronic myelogenous leukemia. Singh et al. (p. 1231, published online 26 July) identify and characterize a fusion gene present in 3% of human glioblastomas, a deadly brain cancer. In the resultant fusion protein, the tyrosine kinase region of the fibroblast growth factor receptor (FGFR) is joined to a domain from a transforming acidic coiled-coil (TACC) protein. The TACC-FGFR protein is oncogenic, shows unregulated kinase activity, localizes to the mitotic spindle, and disrupts chromosome segregation. In mice, FGFR inhibitors slowed the growth of tumors driven by the TACC-FGFR gene, suggesting that a subset of glioblastoma patients may benefit from these types of drugs. A fusion gene detected in a small subset of human brain tumors encodes a potentially druggable target. The brain tumor glioblastoma multiforme (GBM) is among the most lethal forms of human cancer. Here, we report that a small subset of GBMs (3.1%; 3 of 97 tumors examined) harbors oncogenic chromosomal translocations that fuse in-frame the tyrosine kinase coding domains of fibroblast growth factor receptor (FGFR) genes (FGFR1 or FGFR3) to the transforming acidic coiled-coil (TACC) coding domains of TACC1 or TACC3, respectively. The FGFR-TACC fusion protein displays oncogenic activity when introduced into astrocytes or stereotactically transduced in the mouse brain. The fusion protein, which localizes to mitotic spindle poles, has constitutive kinase activity and induces mitotic and chromosomal segregation defects and triggers aneuploidy. Inhibition of FGFR kinase corrects the aneuploidy, and oral administration of an FGFR inhibitor prolongs survival of mice harboring intracranial FGFR3-TACC3–initiated glioma. FGFR-TACC fusions could potentially identify a subset of GBM patients who would benefit from targeted FGFR kinase inhibition.


Radiology | 2008

Gliomas: Predicting Time to Progression or Survival with Cerebral Blood Volume Measurements at Dynamic Susceptibility-weighted Contrast-enhanced Perfusion MR Imaging

Meng Law; Robert J. Young; James S. Babb; Nicole Peccerelli; Sophie Chheang; Michael L. Gruber; Douglas C. Miller; John G. Golfinos; David Zagzag; Glyn Johnson

PURPOSE To retrospectively determine whether relative cerebral blood volume (CBV) measurements can be used to predict clinical outcome in patients with high-grade gliomas (HGGs) and low-grade gliomas (LGGs) and specifically whether patients who have gliomas with a high initial relative CBV have more rapid progression than those who have gliomas with a low relative CBV. MATERIALS AND METHODS Approval for this retrospective HIPAA-compliant study was obtained from the Institutional Board of Research Associates, with waiver of informed consent. One hundred eighty-nine patients (122 male and 67 female patients; median age, 43 years; range, 4-80 years) were examined with dynamic susceptibility-weighted contrast material-enhanced perfusion magnetic resonance (MR) imaging and were followed up clinically with MR imaging (median follow-up, 334 days). Log-rank tests were used to evaluate the association between relative CBV and time to progression by using Kaplan-Meier curves. Binary logistic regression was used to determine whether age, sex, and relative CBV were associated with an adverse event (progressive disease or death). RESULTS Values for the mean relative CBV for patients according to each clinical response were as follows: 1.41 +/- 0.13 (standard deviation) for complete response (n = 4), 2.36 +/- 1.78 for stable disease (n = 41), 4.84 +/- 3.32 for progressive disease (n = 130), and 3.82 +/- 1.93 for death (n = 14). Kaplan-Meier estimates of median time to progression in days indicated that patients with a relative CBV of less than 1.75 had a median time to progression of 3585 days, whereas patients with a relative CBV of more than 1.75 had a time to progression of 265 days. Age and relative CBV were also independent predictors for clinical outcome. CONCLUSION Dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging can be used to predict median time to progression in patients with gliomas, independent of pathologic findings. Patients who have HGGs and LGGs with a high relative CBV (>1.75) have a significantly more rapid time to progression than do patients who have gliomas with a low relative CBV.


Cancer Research | 2006

Hypoxia-Inducible Factor-1-Dependent Repression of E-cadherin in von Hippel-Lindau Tumor Suppressor–Null Renal Cell Carcinoma Mediated by TCF3, ZFHX1A, and ZFHX1B

Balaji Krishnamachary; David Zagzag; Hideko Nagasawa; Karin Rainey; Hiroaki Okuyama; Jin H. Baek; Gregg L. Semenza

A critical event in the pathogenesis of invasive and metastatic cancer is E-cadherin loss of function. Renal clear cell carcinoma (RCC) is characterized by loss of function of the von Hippel-Lindau tumor suppressor (VHL), which negatively regulates hypoxia-inducible factor-1 (HIF-1). Loss of E-cadherin expression and decreased cell-cell adhesion in VHL-null RCC4 cells were corrected by enforced expression of VHL, a dominant-negative HIF-1alpha mutant, or a short hairpin RNA directed against HIF-1alpha. In human RCC biopsies, expression of E-cadherin and HIF-1alpha was mutually exclusive. The expression of mRNAs encoding TCF3, ZFHX1A, and ZFHX1B, which repress E-cadherin gene transcription, was increased in VHL-null RCC4 cells in a HIF-1-dependent manner. Thus, HIF-1 contributes to the epithelial-mesenchymal transition in VHL-null RCC by indirect repression of E-cadherin.


Nature | 2012

Clonal selection drives genetic divergence of metastatic medulloblastoma

Xiaochong Wu; Paul A. Northcott; Adrian Dubuc; Adam J. Dupuy; David Shih; Hendrik Witt; Sidney Croul; Eric Bouffet; Daniel W. Fults; Charles G. Eberhart; Livia Garzia; Timothy Van Meter; David Zagzag; Nada Jabado; Jeremy Schwartzentruber; Jacek Majewski; Todd E. Scheetz; Stefan M. Pfister; Andrey Korshunov; Xiao-Nan Li; Stephen W. Scherer; Yoon-Jae Cho; Keiko Akagi; Tobey J. MacDonald; Jan Koster; Martin McCabe; Aaron L. Sarver; V. Peter Collins; William A. Weiss; David A. Largaespada

Medulloblastoma, the most common malignant paediatric brain tumour, arises in the cerebellum and disseminates through the cerebrospinal fluid in the leptomeningeal space to coat the brain and spinal cord. Dissemination, a marker of poor prognosis, is found in up to 40% of children at diagnosis and in most children at the time of recurrence. Affected children therefore are treated with radiation to the entire developing brain and spinal cord, followed by high-dose chemotherapy, with the ensuing deleterious effects on the developing nervous system. The mechanisms of dissemination through the cerebrospinal fluid are poorly studied, and medulloblastoma metastases have been assumed to be biologically similar to the primary tumour. Here we show that in both mouse and human medulloblastoma, the metastases from an individual are extremely similar to each other but are divergent from the matched primary tumour. Clonal genetic events in the metastases can be demonstrated in a restricted subclone of the primary tumour, suggesting that only rare cells within the primary tumour have the ability to metastasize. Failure to account for the bicompartmental nature of metastatic medulloblastoma could be a major barrier to the development of effective targeted therapies.


Brain Pathology | 2006

Angiogenesis in Gliomas: Biology and Molecular Pathophysiology

Ingeborg Fischer; Jean-Pierre Gagner; Meng Law; Elizabeth W. Newcomb; David Zagzag

Glioblastoma multiforme (GBM) is characterized by exuberant angiogenesis, a key event in tumor growth and progression. The pathologic mechanisms driving this change and the biological behavior of gliomas remain unclear. One mechanism may involve cooption of native blood vessels by glioma cells inducing expression of angio‐poietin‐2 by endothelial cells. Subsequently, vascular apoptosis and involution leads to necrosis and hypoxia. This in turn induces angiogenesis that is associated with expression of hypoxia‐inducible factor (HIF)‐1 a and vascular endothelial growth factor (VEGF) in perinecrotic pseudopalisading glioma cells. Here we review the molecular and cellular mechanisms implicated in HIF‐1 ‐dependent and HIF‐1 ‐independent glioma‐associated angiogenesis. In GBMs, both tumor hypoxia and genetic alterations commonly occur and act together to induce the expression of HIF‐1. The angiogenic response of the tumor to HIF‐1 is mediated by HIF‐1‐regulated target genes leading to the upregulation of several proangiogenic factors such as VEGF and other adaptive response molecules. Understanding the roles of these regulatory processes in tumor neovascularization, tumor growth and progression, and resistance to therapy will ultimately lead to the development of improved antiangiogenic therapies for GBMs.


Laboratory Investigation | 2006

Hypoxia-inducible factor 1 and VEGF upregulate CXCR4 in glioblastoma: implications for angiogenesis and glioma cell invasion

David Zagzag; Yevgeniy Lukyanov; Li Lan; M. Aktar Ali; Mine Esencay; Olga Mendez; Herman Yee; Evelyn B. Voura; Elizabeth W. Newcomb

Hypoxia and hypoxia-inducible factor-1 (HIF-1) play a critical role in glioblastoma multiforme (GBMs). CXCR4 is involved in angiogenesis and is upregulated by HIF-1α. CXCR4 is a chemokine receptor for stromal cell-derived factor-1 (SDF-1)α, also known as CXCL12. We hypothesized that CXCR4 would be upregulated by hypoxia in GBMs. First, we investigated the expression of HIF-1α and CXCR4 in GBMs. CXCR4 was consistently found colocalized with HIF-1α expression in pseudopalisading glioma cells around areas of necrosis. In addition, angiogenic tumor vessels were strongly positive for CXCR4. Next, we tested the in vitro effect of hypoxia and vascular endothelial growth factor (VEGF) on the expression of CXCR4 in glioma cell lines and in human brain microvascular endothelial cells (HBMECs). Exposure to hypoxia induced significant expression of CXCR4 and HIF-1α in glioma cells, whereas treatment with exogenous VEGF increased CXCR4 expression in HBMECs. We also transfected U87MG glioma cells with an HIF-1α construct and observed that CXCR4 was upregulated in these cells even in normoxic conditions. We then used a lentivirus-mediated shRNA expression vector directed against HIF-1α. When exposed to hypoxia, infected cells failed to show HIF-1α and CXCR4 upregulation. We performed migration assays under normoxic and hypoxic conditions in the presence or absence of AMD3100, a CXCR4 inhibitor. There was a significant increase in the migration of U87MG and LN308 glioma cells in hypoxic conditions, which was inhibited in the presence of AMD3100. These studies demonstrate the critical role played by hypoxia and CXCR4 in glioma cell migration. Based on these studies, we suggest that hypoxia regulates CXCR4 in GBMs at two levels. First, through HIF-1α in the pseudopalisading tumor cells themselves and, secondly, by the VEGF-stimulated angiogenic response in HBMECs. We believe this knowledge may lead to a potentially important two-pronged therapy against GBM progression using chemotherapy targeting CXCR4.


Nature Genetics | 2014

Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations

Pawel Buczkowicz; Christine M. Hoeman; Patricia Rakopoulos; Sanja Pajovic; Louis Letourneau; Misko Dzamba; Andrew Morrison; Peter W. Lewis; Eric Bouffet; Ute Bartels; Jennifer Zuccaro; Sameer Agnihotri; Scott Ryall; Mark Barszczyk; Yevgen Chornenkyy; Mathieu Bourgey; Guillaume Bourque; Alexandre Montpetit; Francisco Cordero; Pedro Castelo-Branco; Joshua Mangerel; Uri Tabori; King Ching Ho; Annie Huang; Kathryn R. Taylor; Alan Mackay; Javad Nazarian; Jason Fangusaro; Matthias A. Karajannis; David Zagzag

Diffuse intrinsic pontine glioma (DIPG) is a fatal brain cancer that arises in the brainstem of children, with no effective treatment and near 100% fatality. The failure of most therapies can be attributed to the delicate location of these tumors and to the selection of therapies on the basis of assumptions that DIPGs are molecularly similar to adult disease. Recent studies have unraveled the unique genetic makeup of this brain cancer, with nearly 80% found to harbor a p.Lys27Met histone H3.3 or p.Lys27Met histone H3.1 alteration. However, DIPGs are still thought of as one disease, with limited understanding of the genetic drivers of these tumors. To understand what drives DIPGs, we integrated whole-genome sequencing with methylation, expression and copy number profiling, discovering that DIPGs comprise three molecularly distinct subgroups (H3-K27M, silent and MYCN) and uncovering a new recurrent activating mutation affecting the activin receptor gene ACVR1 in 20% of DIPGs. Mutations in ACVR1 were constitutively activating, leading to SMAD phosphorylation and increased expression of the downstream activin signaling targets ID1 and ID2. Our results highlight distinct molecular subgroups and novel therapeutic targets for this incurable pediatric cancer.

Collaboration


Dive into the David Zagzag's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthias A. Karajannis

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge