Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David Zenisek is active.

Publication


Featured researches published by David Zenisek.


Cell | 2005

Coupling between Clathrin-Coated-Pit Invagination, Cortactin Recruitment, and Membrane Scission Observed in Live Cells

Christien Merrifield; David Perrais; David Zenisek

During clathrin-mediated endocytosis, membrane scission marks the isolation of a cargo-laden clathrin-coated pit (CCP) from the cell exterior. Here we used live-cell imaging of a pH-sensitive cargo to visualize the formation of clathrin-coated vesicles (CCVs) at single CCPs with a time resolution of seconds. We show that CCPs are highly dynamic and can produce multiple vesicles in succession. Using alternating evanescent field and epifluorescence illumination, we show that CCP invagination and scission are tightly coupled, with scission coinciding with maximal displacement of CCPs from the plasma membrane and with peak recruitment of cortactin-DsRed, a dynamin and F-actin binding protein. Finally, perturbing actin polymerization with latrunculin-B drastically reduces the efficiency of membrane scission and affects many aspects of CCP dynamics. We propose that CCP invagination, actin polymerization, and CCV formation are highly coordinated for efficient endocytosis.


Neuron | 2002

A Membrane Marker Leaves Synaptic Vesicles in Milliseconds after Exocytosis in Retinal Bipolar Cells

David Zenisek; Jürgen A. Steyer; Morris Feldman; Wolfhard Almers

Perhaps synaptic vesicles can recycle so rapidly because they avoid complete exocytosis, and release transmitter through a fusion pore that opens transiently. This view emerges from imaging whole terminals where the fluorescent lipid FM1-43 seems unable to leave vesicles during transmitter release. Here we imaged single, FM1-43-stained synaptic vesicles by evanescent field fluorescence microscopy, and tracked the escape of dye from single vesicles by watching the increase in fluorescence after exocytosis. Dye left rapidly and completely during most or all exocytic events. We conclude that vesicles at this terminal allow lipid exchange soon after exocytosis, and lose their dye even if they connected with the plasma membrane only briefly. At the level of single vesicles, therefore, observations with FM1-43 provide no evidence that exocytosis of synaptic vesicles is incomplete.


The Journal of Neuroscience | 2004

Visualizing Synaptic Ribbons in the Living Cell

David Zenisek; Nicole K. Horst; Christien Merrifield; Peter Sterling; Gary Matthews

Visual and auditory information is encoded by sensory neurons that tonically release neurotransmitter at high rates. The synaptic ribbon is an essential organelle in nerve terminals of these neurons. Its precise function is unknown, but if the ribbon could be visualized in a living terminal, both its own dynamics and its relation to calcium and vesicle dynamics could be studied. We designed a short fluorescent peptide with affinity for a known binding domain of RIBEYE, a protein unique to the ribbon. When introduced via a whole-cell patch pipette, the peptide labeled structures at the presynaptic plasma membrane of ribbon-type terminals. The fluorescent spots match in size, location, number, and distribution the known features of synaptic ribbons. Furthermore, fluorescent spots mapped by confocal microscopy directly match the ribbons identified by electron microscopy in the same cell. Clearly the peptide binds to the synaptic ribbon, but even at saturating concentrations it affects neither the morphology of the ribbon nor its tethering of synaptic vesicles. It also does not inhibit exocytosis. Using the peptide label, we observed that the ribbon is immobile over minutes and that calcium influx is concentrated at the ribbon. Finally, we find that each ribbon in a retinal bipolar cell contains ∼4000 molecules of RIBEYE, indicating that it is the major component of the synaptic ribbon.


Neuron | 2011

An instructive role for patterned spontaneous retinal activity in mouse visual map development.

Hong Ping Xu; Moran Furman; Yann S. Mineur; Hui Chen; Sarah L. King; David Zenisek; Z. Jimmy Zhou; Daniel A. Butts; Ning Tian; Marina R. Picciotto; Michael C. Crair

Complex neural circuits in the mammalian brain develop through a combination of genetic instruction and activity-dependent refinement. The relative role of these factors and the form of neuronal activity responsible for circuit development is a matter of significant debate. In the mammalian visual system, retinal ganglion cell projections to the brain are mapped with respect to retinotopic location and eye of origin. We manipulated the pattern of spontaneous retinal waves present during development without changing overall activity levels through the transgenic expression of β2-nicotinic acetylcholine receptors in retinal ganglion cells of mice. We used this manipulation to demonstrate that spontaneous retinal activity is not just permissive, but instructive in the emergence of eye-specific segregation and retinotopic refinement in the mouse visual system. This suggests that specific patterns of spontaneous activity throughout the developing brain are essential in the emergence of specific and distinct patterns of neuronal connectivity.


Nature Neuroscience | 2011

Acute destruction of the synaptic ribbon reveals a role for the ribbon in vesicle priming

Josefin Snellman; Bhupesh Mehta; Norbert Babai; Theodore M. Bartoletti; Wendy Akmentin; Adam Francis; Gary Matthews; Wallace B. Thoreson; David Zenisek

In vision, balance and hearing, sensory receptor cells translate sensory stimuli into electrical signals whose amplitude is graded with stimulus intensity. The output synapses of these sensory neurons must provide fast signaling to follow rapidly changing stimuli while also transmitting graded information covering a wide range of stimulus intensity and must be able to sustain this signaling for long time periods. To meet these demands, specialized machinery for transmitter release, the synaptic ribbon, has evolved at the synaptic outputs of these neurons. We found that acute disruption of synaptic ribbons by photodamage to the ribbon markedly reduced both sustained and transient components of neurotransmitter release in mouse bipolar cells and salamander cones without affecting the ultrastructure of the ribbon or its ability to localize synaptic vesicles to the active zone. Our results indicate that ribbons mediate both slow and fast signaling at sensory synapses and support an additional role for the synaptic ribbon in priming vesicles for exocytosis at active zones.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Vesicle association and exocytosis at ribbon and extraribbon sites in retinal bipolar cell presynaptic terminals

David Zenisek

Synaptic vesicles release neurotransmitter by following a process of vesicle docking and exocytosis. Although these steps are well established, it has been difficult to observe and measure these rates directly in living synapses. Here, by combining the direct imaging of single synaptic vesicles and synaptic ribbons, I measure the properties of vesicle docking and evoked and spontaneous release from ribbon and extraribbon locations in a ribbon-type synaptic terminal, the goldfish retinal bipolar cell. In the absence of a stimulus, captured vesicles near ribbons associate tightly and only rarely undock or undergo spontaneous exocytosis. By contrast, vesicle capture at outlier sites is less stable and spontaneous exocytosis occurs at a higher rate. In response to a stimulus, exocytic events cluster near ribbons, but show no evidence of clustering away from ribbon sites. Together, the results here indicate that, although vesicles can associate and fuse both near and away from synaptic sites, vesicles at synaptic ribbons associate more stably and fusion is more tightly linked to stimuli.


Current Opinion in Neurobiology | 2005

Recent progress towards understanding the synaptic ribbon

Elizabeth D Prescott; David Zenisek

Neurons of the visual, auditory and vestibular systems that signal through graded changes in membrane potential rely upon synaptic ribbons for the exquisite control of neurotransmitter release. Although clearly important for tonic neurotransmission, the precise role of synaptic ribbons remains elusive. In recent years, several genetic, biochemical, electrophysiological and optical approaches have begun to shed light on the functions of these enigmatic organelles.


The Journal of Neuroscience | 2013

Properties of ribbon and non-ribbon release from rod photoreceptors revealed by visualizing individual synaptic vesicles.

Minghui Chen; Matthew J. Van Hook; David Zenisek; Wallace B. Thoreson

Vesicle release from rod photoreceptors is regulated by Ca2+ entry through L-type channels located near synaptic ribbons. We characterized sites and kinetics of vesicle release in salamander rods by using total internal reflection fluorescence microscopy to visualize fusion of individual synaptic vesicles. A small number of vesicles were loaded by brief incubation with FM1–43 or a dextran-conjugated, pH-sensitive form of rhodamine, pHrodo. Labeled organelles matched the diffraction-limited size of fluorescent microspheres and disappeared rapidly during stimulation. Consistent with fusion, depolarization-evoked vesicle disappearance paralleled electrophysiological release kinetics and was blocked by inhibiting Ca2+ influx. Rods maintained tonic release at resting membrane potentials near those in darkness, causing depletion of membrane-associated vesicles unless Ca2+ entry was inhibited. This depletion of release sites implies that sustained release may be rate limited by vesicle delivery. During depolarizing stimulation, newly appearing vesicles approached the membrane at ∼800 nm/s, where they paused for ∼60 ms before fusion. With fusion, vesicles advanced ∼18 nm closer to the membrane. Release events were concentrated near ribbons, but lengthy depolarization also triggered release from more distant non-ribbon sites. Consistent with greater contributions from non-ribbon sites during lengthier depolarization, damaging the ribbon by fluorophore-assisted laser inactivation (FALI) of Ribeye caused only weak inhibition of exocytotic capacitance increases evoked by 200-ms depolarizing test steps, whereas FALI more strongly inhibited capacitance increases evoked by 25 ms steps. Amplifying release by use of non-ribbon sites when rods are depolarized in darkness may improve detection of decrements in release when they hyperpolarize to light.


Nature Neuroscience | 2010

Real-time visualization of complexin during single exocytic events

Seong An; Chad P. Grabner; David Zenisek

Understanding the fundamental role of soluble NSF attachment protein receptor (SNARE) complexes in membrane fusion requires knowledge of the spatiotemporal dynamics of their assembly. We visualized complexin (cplx), a cytosolic protein that binds assembled SNARE complexes, during single exocytic events in live cells. We found that cplx appeared briefly during full fusion. However, a truncated version of cplx containing only the SNARE-complex binding region persisted at fusion sites for seconds and caused fusion to be transient. Resealing pores with the mutant cplx only partially released transmitter and lipid probes, indicating that the pores are narrow and not purely lipidic in structure. Depletion of cplx similarly caused secretory cargo to be retained. These data suggest that cplx is recruited at a late step in exocytosis and modulates fusion pores composed of SNARE complexes.


The Journal of Physiology | 2009

Switching between transient and sustained signalling at the rod bipolar-AII amacrine cell synapse of the mouse retina.

Josefin Snellman; David Zenisek; Scott Nawy

At conventional synapses, invasion of an action potential into the presynaptic terminal produces a rapid Ca2+ influx and ultimately the release of synaptic vesicles. However, retinal rod bipolar cells (RBCs) generally do not produce action potentials, and the rate of depolarization of the axon terminal is instead governed by the rate of rise of the light response, which can be quite slow. Using paired whole‐cell recordings, we measured the behaviour of the RBC‐AII amacrine cell synapse while simulating light‐induced depolarizations either by slowly ramping the RBC voltage or by depolarizing the RBC with the mGluR6 receptor antagonist (R,S)‐α‐cyclopropyl‐4‐phosphonophenylglycine (CPPG). Both voltage ramps and CPPG evoked slow activation of presynaptic Ca2+ currents and severely attenuated the early, transient component of the AII EPSC compared with voltage steps. We also found that the duration of the transient component was limited in time, and this limitation could not be explained by vesicle depletion, inhibitory feedback, or proton inhibition. Limiting the duration of the fast transient insures the availability of readily releasable vesicles to support a second, sustained component of release. The mGluR6 pathway modulator cGMP sped the rate of RBC depolarization in response to puffs of CPPG and consequently potentiated the transient component of the EPSC at the expense of the sustained component. We conclude that the rod bipolar cell is capable of both transient and sustained signalling, and modulation of the mGluR6 pathway by cGMP allows the RBC to switch between these two time courses of transmitter release.

Collaboration


Dive into the David Zenisek's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wallace B. Thoreson

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Minghui Chen

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge