Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Davide Farnocchia is active.

Publication


Featured researches published by Davide Farnocchia.


Icarus | 2014

Orbit and Bulk Density of the OSIRIS-REx Target Asteroid (101955) Bennu

Steven R. Chesley; Davide Farnocchia; Michael C. Nolan; David Vokrouhlický; Paul W. Chodas; Andrea Milani; Federica Spoto; Benjamin Rozitis; Lance A. M. Benner; William F. Bottke; Michael W. Busch; Joshua Patrick Emery; Ellen Susanna Howell; Dante S. Lauretta; Jean-Luc Margot; Patrick A. Taylor

The target asteroid of the OSIRIS-REx asteroid sample return mission, (101955) Bennu (formerly 1999 RQ 36), is a half-kilometer near-Earth asteroid with an extraordinarily well constrained orbit. An extensive data set of optical astrometry from 1999 to 2013 and high-quality radar delay measurements to Bennu in 1999, 2005, and 2011 reveal the action of the Yarkovsky effect, with a mean semimajor axis drift rate da=dt ¼ð � 19:0 � 0:1 Þ� 10


Publications of the Astronomical Society of the Pacific | 2013

The Pan-STARRS Moving Object Processing System

Larry Denneau; Robert Jedicke; T. Grav; Mikael Granvik; Jeremy Kubica; Andrea Milani; Peter Vereš; R. J. Wainscoat; Daniel Chang; Francesco Pierfederici; Nick Kaiser; K. C. Chambers; J. N. Heasley; E. A. Magnier; Paul A. Price; Jonathan Myers; Jan Kleyna; Henry H. Hsieh; Davide Farnocchia; C. Waters; W. H. Sweeney; Denver Green; Bryce Bolin; W. S. Burgett; Jeffrey S. Morgan; John L. Tonry; K. W. Hodapp; Serge Chastel; S. R. Chesley; A. Fitzsimmons

ABSTRACT.We describe the Pan-STARRS Moving Object Processing System (MOPS), a modern software package that produces automatic asteroid discoveries and identifications from catalogs of transient detections from next-generation astronomical survey telescopes. MOPS achieves >99.5%>99.5% efficiency in producing orbits from a synthetic but realistic population of asteroids whose measurements were simulated for a Pan-STARRS4-class telescope. Additionally, using a nonphysical grid population, we demonstrate that MOPS can detect populations of currently unknown objects such as interstellar asteroids. MOPS has been adapted successfully to the prototype Pan-STARRS1 telescope despite differences in expected false detection rates, fill-factor loss, and relatively sparse observing cadence compared to a hypothetical Pan-STARRS4 telescope and survey. MOPS remains highly efficient at detecting objects but drops to 80% efficiency at producing orbits. This loss is primarily due to configurable MOPS processing limits that a...


Icarus | 2013

Yarkovsky-driven impact risk analysis for asteroid (99942) Apophis

Davide Farnocchia; S. R. Chesley; Paul W. Chodas; Marco Micheli; David J. Tholen; Andrea Milani; Garrett T. Elliott; Fabrizio Bernardi

We assess the risk of an Earth impact for asteroid (99942) Apophis by means of a statistical analysis accounting for the uncertainty of both the orbital solution and the Yarkovsky effect. We select those observations with either rigorous uncertainty information provided by the observer or a high established accuracy. For the Yarkovsky effect we perform a Monte Carlo simulation that fully accounts for the uncertainty in the physical characterization, especially for the unknown spin orientation. By mapping the uncertainty information onto the 2029 b-plane and identifying the keyholes corresponding to subsequent impacts we assess the impact risk for future encounters. In particular, we find an impact probability greater than 10 −6 for an impact in 2068. We analyze the stability of the impact probability with respect to the assumptions on Apophis’ physical characterization and consider the possible effect of the early 2013 radar apparition.


Celestial Mechanics and Dynamical Astronomy | 2010

Innovative methods of correlation and orbit determination for space debris

Davide Farnocchia; Giacomo Tommei; Andrea Milani; Alessandro Rossi

We propose two algorithms to provide a full preliminary orbit of an Earth-orbiting object with a number of observations lower than the classical methods, such as those by Laplace and Gauss. The first one is the Virtual debris algorithm, based upon the admissible region, that is the set of the unknown quantities corresponding to possible orbits for a given observation for objects in Earth orbit (as opposed to both interplanetary orbits and ballistic ones). A similar method has already been successfully used in recent years for the asteroidal case. The second algorithm uses the integrals of the geocentric 2-body motion, which must have the same values at the times of the different observations for a common orbit to exist. We also discuss how to account for the perturbations of the 2-body motion, e.g., the J2 effect.


The Astrophysical Journal | 2014

Delivery of Dust Grains from Comet C/2013 A1 (Siding Spring) to Mars

Pasquale Tricarico; Nalin H. Samarasinha; Mark V. Sykes; Jian-Yang Li; Tony L. Farnham; Michael Shawn Kelley; Davide Farnocchia; R. Stevenson; James Monie Bauer; Robert Lock

Comet C/2013 A1 (Siding Spring) will have a close encounter with Mars on 2014 October 19. We model the dynamical evolution of dust grains from the time of their ejection from the comet nucleus to the close encounter with Mars, and determine the flux at Mars. Constraints on the ejection velocity from Hubble Space Telescope observations indicate that the bulk of the grains will likely miss Mars, although it is possible that a few percent of the grains with higher velocities will reach Mars, peaking approximately 90-100 minutes after the close approach of the nucleus, and consisting mostly of millimeter-radius grains ejected from the comet nucleus at a heliocentric distance of approximately 9 AU or larger. At higher velocities, younger grains from submillimeter to several millimeters can also reach Mars, although an even smaller fraction of grains is expected have these velocities, with negligible effect on the peak timing. Using NEOWISE observations of the comet, we can estimate that the maximum fluence will be of the order of 10–7 grains m–2. We include a detailed analysis of how the expected fluence depends on the grain density, ejection velocity, and size-frequency distribution, to account for current model uncertainties and in preparation of possible refined model values in the near future.


The Astrophysical Journal | 2014

A STUDY OF DUST AND GAS AT MARS FROM COMET C/2013 A1 (SIDING SPRING)

Michael Shawn Kelley; Tony L. Farnham; D. Bodewits; Pasquale Tricarico; Davide Farnocchia

Although the nucleus of comet C/2013 A1 (Siding Spring) will safely pass Mars in October 2014, the dust in the coma and tail will more closely approach the planet. Using a dynamical model of comet dust, we estimate the impact fluence. Based on our nominal model no impacts are expected at Mars. Relaxing our nominal models parameters, the fluence is no greater than ~10^-7 grains/m^2 for grain radii larger than 10 {\mu}m. Mars orbiting spacecraft are unlikely to be impacted by large dust grains, but Mars may receive as many as ~10^7 grains, or ~100 kg of total dust. We also estimate the flux of impacting gas molecules commonly observed in comet comae.


Monthly Notices of the Royal Astronomical Society | 2011

Correlation and orbit determination of space objects based on sparse optical data

Andrea Milani; Giacomo Tommei; Davide Farnocchia; Alessandro Rossi; Thomas Schildknecht; Rüdiger Jehn

While building up a catalog of Earth orbiting objects, if the available optical observations are sparse, not deliberate follow ups of specific objects, no orbit determination is possible without previous correlation of observations obtained at different times. This correlation step is the most computationally intensive, and becomes more and more difficult as the number of objects to be discovered increases. In this paper we tested two different algorithms (and the related prototype software) recently developed to solve the correlation problem for objects in geostationary orbit (GEO), including the accurate orbit determination by full least squares solutions with all six orbital elements. Because of the presence in the GEO region of a significant subpopulation of high area to mass objects, strongly affected by nongravitational perturbations, it was actually necessary to solve also for dynamical parameters describing these effects, that is to fit between 6 and 8 free parameters for each orbit. The validation was based upon a set of real data, acquired from the ESA Space Debris Telescope (ESASDT) at the Teide observatory (Canary Islands). We proved that it is possible to assemble a set of sparse observations into a set of objects with orbits, starting from a sparse time distribution of observations, which would be compatible with a survey capable of covering the region of interest in the sky just once per night. This could result in a significant reduction of the requirements for a future telescope network, with respect to what would have been required with the previously known algorithm for correlation and orbit determination.


Icarus | 2014

Assessment of the 2880 impact threat from Asteroid (29075) 1950 DA

Davide Farnocchia; S. R. Chesley

Abstract In this paper we perform an assessment of the 2880 Earth impact risk for Asteroid (29075) 1950 DA. To obtain reliable predictions we analyze the contribution of the observational dataset and the astrometric treatment, the numerical error in the long-term integration, and the different accelerations acting on the asteroid. The main source of uncertainty is the Yarkovsky effect, which we statistically model starting from 1950 DA’s available physical characterization, astrometry, and dynamical properties. Before the release of 2012 radar data, this modeling suggests that 1950 DA has 99% likelihood of being a retrograde rotator. By using a 7-dimensional Monte Carlo sampling we map 1950 DA’s uncertainty region to the 2880 close approach b-plane and find a 5 × 10 - 4 impact probability. With the recently released 2012 radar observations, the direct rotation is definitely ruled out and the impact probability decreases to 2.5 × 10 - 4 .


arXiv: Space Physics | 2010

Orbit determination of space objects based on sparse optical data

Andrea Milani; Giacomo Tommei; Davide Farnocchia; Alessandro Rossi; Thomas Schildknecht; R. Jehn

While building up a catalog of Earth orbiting objects, if the available optical observations are sparse, not deliberate follow ups of specific objects, no orbit determination is possible without previous correlation of observations obtained at different times. This correlation step is the most computationally intensive, and becomes more and more difficult as the number of objects to be discovered increases. In this paper we tested two different algorithms (and the related prototype software) recently developed to solve the correlation problem for objects in geostationary orbit (GEO), including the accurate orbit determination by full least squares solutions with all six orbital elements. Because of the presence in the GEO region of a significant subpopulation of high area to mass objects, strongly affected by nongravitational perturbations, it was actually necessary to solve also for dynamical parameters describing these effects, that is to fit between 6 and 8 free parameters for each orbit. The validation was based upon a set of real data, acquired from the ESA Space Debris Telescope (ESASDT) at the Teide observatory (Canary Islands). We proved that it is possible to assemble a set of sparse observations into a set of objects with orbits, starting from a sparse time distribution of observations, which would be compatible with a survey capable of covering the region of interest in the sky just once per night. This could result in a significant reduction of the requirements for a future telescope network, with respect to what would have been required with the previously known algorithm for correlation and orbit determination.


Icarus | 2015

Systematic ranging and late warning asteroid impacts

Davide Farnocchia; S. R. Chesley; Marco Micheli

We describe systematic ranging, an orbit determination technique suitable to assess the near-term Earth impact hazard posed by newly discovered asteroids. For these late warning cases, the time interval covered by the observations is generally short, perhaps a few hours or even less, which leads to severe degeneracies in the orbit estimation process. The systematic ranging approach gets around these degeneracies by performing a raster scan in the poorly-constrained space of topocentric range and range rate, while the plane of sky position and motion are directly tied to the recorded observations. This scan allows us to identify regions corresponding to collision solutions, as well as potential impact times and locations. From the probability distribution of the observation errors, we obtain a probability distribution in the orbital space and then estimate the probability of an Earth impact. We show how this technique is effective for a number of examples, including 2008 TC_3 and 2014 AA, the only two asteroids to date discovered prior to impact.

Collaboration


Dive into the Davide Farnocchia's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. R. Chesley

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Paul W. Chodas

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Steven R. Chesley

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

David Vokrouhlický

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Vereš

Comenius University in Bratislava

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Larry Denneau

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge