Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Davide Gabellini is active.

Publication


Featured researches published by Davide Gabellini.


Cell | 2002

Inappropriate Gene Activation in FSHD: A Repressor Complex Binds a Chromosomal Repeat Deleted in Dystrophic Muscle

Davide Gabellini; Michael R. Green; Rossella Tupler

Facioscapulohumeral muscular dystrophy (FSHD), a common myopathy, is an autosomal dominant disease of unknown molecular mechanism. Almost all FSHD patients carry deletions of an integral number of tandem 3.3 kilobase repeats, termed D4Z4, located on chromosome 4q35. Here, we find that in FSHD muscle, 4q35 genes located upstream of D4Z4 are inappropriately overexpressed. We show that an element within D4Z4 specifically binds a multiprotein complex consisting of YY1, a known transcriptional repressor, HMGB2, an architectural protein, and nucleolin. We demonstrate that this multiprotein complex binds D4Z4 in vitro and in vivo and mediates transcriptional repression of 4q35 genes. Based upon these results, we propose that deletion of D4Z4 leads to the inappropriate transcriptional derepression of 4q35 genes resulting in disease.


Cell | 2012

A Long ncRNA Links Copy Number Variation to a Polycomb/Trithorax Epigenetic Switch in FSHD Muscular Dystrophy

Daphne S. Cabianca; Valentina Casa; Beatrice Bodega; Alexandros Xynos; Enrico Ginelli; Yujiro Tanaka; Davide Gabellini

Summary Repetitive sequences account for more than 50% of the human genome. Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal-dominant disease associated with reduction in the copy number of the D4Z4 repeat mapping to 4q35. By an unknown mechanism, D4Z4 deletion causes an epigenetic switch leading to de-repression of 4q35 genes. Here we show that the Polycomb group of epigenetic repressors targets D4Z4 in healthy subjects and that D4Z4 deletion is associated with reduced Polycomb silencing in FSHD patients. We identify DBE-T, a chromatin-associated noncoding RNA produced selectively in FSHD patients that coordinates de-repression of 4q35 genes. DBE-T recruits the Trithorax group protein Ash1L to the FSHD locus, driving histone H3 lysine 36 dimethylation, chromatin remodeling, and 4q35 gene transcription. This study provides insights into the biological function of repetitive sequences in regulating gene expression and shows how mutations of such elements can influence the progression of a human genetic disease.


Nature | 2006

Facioscapulohumeral muscular dystrophy in mice overexpressing FRG1

Davide Gabellini; Giuseppe D'Antona; Maurizio Moggio; Alessandro Prelle; Chiara Zecca; Raffaella Adami; Barbara Angeletti; Patrizia Ciscato; Roberto Bottinelli; Michael R. Green; Rossella Tupler

Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant neuromuscular disorder that is not due to a classical mutation within a protein-coding gene. Instead, almost all FSHD patients carry deletions of an integral number of tandem 3.3-kilobase repeat units, termed D4Z4, located on chromosome 4q35 (ref. 3). D4Z4 contains a transcriptional silencer whose deletion leads to inappropriate overexpression in FSHD skeletal muscle of 4q35 genes located upstream of D4Z4 (ref. 4). To identify the gene responsible for FSHD pathogenesis, we generated transgenic mice selectively overexpressing in skeletal muscle the 4q35 genes FRG1, FRG2 or ANT1. We find that FRG1 transgenic mice develop a muscular dystrophy with features characteristic of the human disease; by contrast, FRG2 and ANT1 transgenic mice seem normal. FRG1 is a nuclear protein and several lines of evidence suggest it is involved in pre-messenger RNA splicing. We find that in muscle of FRG1 transgenic mice and FSHD patients, specific pre-mRNAs undergo aberrant alternative splicing. Collectively, our results suggest that FSHD results from inappropriate overexpression of FRG1 in skeletal muscle, which leads to abnormal alternative splicing of specific pre-mRNAs.


The EMBO Journal | 2003

Early mitotic degradation of the homeoprotein HOXC10 is potentially linked to cell cycle progression

Davide Gabellini; Ivan N. Colaluca; Hartmut C. Vodermaier; Giuseppe Biamonti; Mauro Giacca; Arturo Falaschi; Silvano Riva; Fiorenzo A. Peverali

Hox proteins are transcription factors involved in controlling axial patterning, leukaemias and hereditary malformations. Here, we show that HOXC10 oscillates in abundance during the cell cycle, being targeted for degradation early in mitosis by the ubiquitin‐dependent proteasome pathway. Among abdominal‐B subfamily members, the mitotic proteolysis of HOXC10 appears unique, since the levels of the paralogous HOXD10 and the related homeoprotein HOXC13 are constant throughout the cell cycle. When two destruction box motifs (D‐box) are mutated, HOXC10 is stabilized and cells accumulate in metaphase. HOXC10 appears to be a new prometaphase target of the anaphase‐promoting complex (APC), since its degradation coincides with cyclin A destruction and is suppressed by expression of a dominant‐negative form of UbcH10, an APC‐associated ubiquitin‐conjugating enzyme. Moreover, HOXC10 co‐immunoprecipitates the APC subunit CDC27, and its in vitro degradation is reduced in APC‐depleted extracts or by competition with the APC substrate cyclin A. These data imply that HOXC10 is a homeoprotein with the potential to influence mitotic progression, and might provide a link between developmental regulation and cell cycle control.


Cellular and Molecular Life Sciences | 2004

Molecular basis of facioscapulohumeral muscular dystrophy

Rossella Tupler; Davide Gabellini

Facioscapulohumeral muscular dystrophy (FSHD), the third most common myopathy, is an autosomal dominant disease with an insidious onset and progression. Almost all FSHD patients carry deletions of an integral number of tandem 3.3 kb repeats, termed D4Z4, located on chromosome 4q35. In FSHD patients a deletion of the integral number of D4Z4 repeats generates a fragment that is usually smaller than 35 kb (fewer than 11 repeats), whereas in normal controls the size usually ranges from 50 to 300 kb (between 11 and 150 units). D4Z4 is a repetitive element with heterochromatic features. Recently, 4q35 genes located upstream of D4Z4 have been found to be inappropriately overexpressed specifically in FSHD muscle. An element within D4Z4 has been shown to behave as a silencer that provides a binding site for a transcriptional repressing complex. These results suggest a model in which deletion of D4Z4 leads to the inappropriate transcriptional derepression of 4q35 genes, resulting in disease.


Skeletal Muscle | 2014

Long noncoding RNAs, emerging players in muscle differentiation and disease.

Maria Victoria Neguembor; Mathivanan Jothi; Davide Gabellini

The vast majority of the mammalian genome is transcribed giving rise to many different types of noncoding RNAs. Among them, long noncoding RNAs are the most numerous and functionally versatile class. Indeed, the lncRNA repertoire might be as rich as the proteome. LncRNAs have emerged as key regulators of gene expression at multiple levels. They play important roles in the regulation of development, differentiation and maintenance of cell identity and they also contribute to disease. In this review, we present recent advances in the biology of lncRNAs in muscle development and differentiation. We will also discuss the contribution of lncRNAs to muscle disease with a particular focus on Duchenne and facioscapulohumeral muscular dystrophies.


PLOS Genetics | 2013

Rbfox1 Downregulation and Altered Calpain 3 Splicing by FRG1 in a Mouse Model of Facioscapulohumeral Muscular Dystrophy (FSHD)

Mariaelena Pistoni; Lily Shiue; Melissa S. Cline; Sergia Bortolanza; Maria Victoria Neguembor; Alexandros Xynos; Manuel Ares; Davide Gabellini

Facioscapulohumeral muscular dystrophy (FSHD) is a common muscle disease whose molecular pathogenesis remains largely unknown. Over-expression of FSHD region gene 1 (FRG1) in mice, frogs, and worms perturbs muscle development and causes FSHD–like phenotypes. FRG1 has been implicated in splicing, and we asked how splicing might be involved in FSHD by conducting a genome-wide analysis in FRG1 mice. We find that splicing perturbations parallel the responses of different muscles to FRG1 over-expression and disease progression. Interestingly, binding sites for the Rbfox family of splicing factors are over-represented in a subset of FRG1-affected splicing events. Rbfox1 knockdown, over-expression, and RNA-IP confirm that these are direct Rbfox1 targets. We find that FRG1 is associated to the Rbfox1 RNA and decreases its stability. Consistent with this, Rbfox1 expression is down-regulated in mice and cells over-expressing FRG1 as well as in FSHD patients. Among the genes affected is Calpain 3, which is mutated in limb girdle muscular dystrophy, a disease phenotypically similar to FSHD. In FRG1 mice and FSHD patients, the Calpain 3 isoform lacking exon 6 (Capn3 E6–) is increased. Finally, Rbfox1 knockdown and over-expression of Capn3 E6- inhibit muscle differentiation. Collectively, our results suggest that a component of FSHD pathogenesis may arise by over-expression of FRG1, reducing Rbfox1 levels and leading to aberrant expression of an altered Calpain 3 protein through dysregulated splicing.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Amino acid starvation induces reactivation of silenced transgenes and latent HIV-1 provirus via down-regulation of histone deacetylase 4 (HDAC4)

Ilaria Palmisano; Giulia Della Chiara; Rosa Lucia D’Ambrosio; Claudia Huichalaf; Paola Brambilla; Silvia Corbetta; Michela Riba; Rosanna Piccirillo; Sergio Valente; Giorgio Casari; Antonello Mai; Filippo Martinelli Boneschi; Davide Gabellini; Guido Poli; Maria Vittoria Schiaffino

The epigenetic silencing of exogenous transcriptional units integrated into the genome represents a critical problem both for long-term gene therapy efficacy and for the eradication of latent viral infections. We report here that limitation of essential amino acids, such as methionine and cysteine, causes selective up-regulation of exogenous transgene expression in mammalian cells. Prolonged amino acid deprivation led to significant and reversible increase in the expression levels of stably integrated transgenes transcribed by means of viral or human promoters in HeLa cells. This phenomenon was mediated by epigenetic chromatin modifications, because histone deacetylase (HDAC) inhibitors reproduced starvation-induced transgene up-regulation, and transcriptome analysis, ChIP, and pharmacological and RNAi approaches revealed that a specific class II HDAC, namely HDAC4, plays a critical role in maintaining the silencing of exogenous transgenes. This mechanism was also operational in cells chronically infected with HIV-1, the etiological agent of AIDS, in a latency state. Indeed, both amino acid starvation and pharmacological inhibition of HDAC4 promoted reactivation of HIV-1 transcription and reverse transcriptase activity production in HDAC4+ ACH-2 T-lymphocytic cells but not in HDAC4− U1 promonocytic cells. Thus, amino acid deprivation leads to transcriptional derepression of silenced transgenes, including integrated plasmids and retroviruses, by a process involving inactivation or down-regulation of HDAC4. These findings suggest that selective targeting of HDAC4 might represent a unique strategy for modulating the expression of therapeutic viral vectors, as well as that of integrated HIV-1 proviruses in latent reservoirs without significant cytotoxicity.


Epigenomics | 2010

In junk we trust: repetitive DNA, epigenetics and facioscapulohumeral muscular dystrophy.

Maria Victoria Neguembor; Davide Gabellini

Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant myopathy with a peculiar etiology. Unlike most genetic disorders, FSHD is not caused by mutations in a protein-coding gene. Instead, it is associated with contraction of the D4Z4 macrosatellite repeat array located at 4q35. Interestingly, D4Z4 deletion is not sufficient per se to cause FSHD. Moreover, the disease severity, its rate of progression and the distribution of muscle weakness display great variability even among close family relatives. Hence, additional genetic and epigenetic events appear to be required for FSHD pathogenesis. Indeed, recent findings suggest that virtually all levels of epigenetic regulation, from DNA methylation to higher order chromosomal architecture, exhibit alterations in the disease locus causing deregulation of 4q35 gene expression, ultimately leading to FSHD.


Frontiers in Genetics | 2012

A repetitive elements perspective in Polycomb epigenetics

Valentina Casa; Davide Gabellini

Repetitive elements comprise over two-thirds of the human genome. For a long time, these elements have received little attention since they were considered non-functional. On the contrary, recent evidence indicates that they play central roles in genome integrity, gene expression, and disease. Indeed, repeats display meiotic instability associated with disease and are located within common fragile sites, which are hotspots of chromosome re-arrangements in tumors. Moreover, a variety of diseases have been associated with aberrant transcription of repetitive elements. Overall this indicates that appropriate regulation of repetitive elements’ activity is fundamental. Polycomb group (PcG) proteins are epigenetic regulators that are essential for the normal development of multicellular organisms. Mammalian PcG proteins are involved in fundamental processes, such as cellular memory, cell proliferation, genomic imprinting, X-inactivation, and cancer development. PcG proteins can convey their activity through long-distance interactions also on different chromosomes. This indicates that the 3D organization of PcG proteins contributes significantly to their function. However, it is still unclear how these complex mechanisms are orchestrated and which role PcG proteins play in the multi-level organization of gene regulation. Intriguingly, the greatest proportion of Polycomb-mediated chromatin modifications is located in genomic repeats and it has been suggested that they could provide a binding platform for Polycomb proteins. Here, these lines of evidence are woven together to discuss how repetitive elements could contribute to chromatin organization in the 3D nuclear space.

Collaboration


Dive into the Davide Gabellini's collaboration.

Top Co-Authors

Avatar

Valentina Casa

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Maria Victoria Neguembor

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Rossella Tupler

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Claudia Huichalaf

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Daphne S. Cabianca

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael R. Green

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Giulia Ferri

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Mariaelena Pistoni

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge