Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Davide Orsi is active.

Publication


Featured researches published by Davide Orsi.


Physical Review Letters | 2012

Heterogeneous and anisotropic dynamics of a 2D gel.

Davide Orsi; Luigi Cristofolini; G. Baldi; Anders Madsen

We report x-ray photon correlation spectroscopy (XPCS) results on bidimensional (2D) gels formed by a Langmuir monolayer of gold nanoparticles. The system allows an experimental determination of the fourth order time correlation function, which is compared to the usual second order correlation function and to the mechanical response measured on macroscopic scale. The observed dynamics is anisotropic, heterogeneous and superdiffusive on the nanoscale. Different time scales, associated with fast heterogeneous dynamics inside 2D cages and slower motion of larger parts of the film, can be identified from the correlation functions. The XPCS results are discussed in view of other experimental results and models of three-dimensional gel dynamics.


Langmuir | 2014

Two-dimensional DPPC based emulsion-like structures stabilized by silica nanoparticles.

Eduardo Guzmán; Davide Orsi; Luigi Cristofolini; Libero Liggieri; Francesca Ravera

We studied the mechanical and structural properties of mixed surface layers composed by 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and silica nanoparticles (NPs). These layers are obtained by spreading a DPPC Langmuir monolayer on a colloidal silica dispersion. The transfer/incorporation of NPs into the DPPC monolayer, driven by electrostatic interactions, alters the molecular orientation, the mechanisms of domain formation, and consequently the phase behavior of the surface layer during compression. The investigation of these systems by means of complementary techniques (Langmuir trough, fluorescence microscopy, ellipsometry, and scanning electron microscopy (SEM)) shows that the incorporated NPs preferentially distribute along the liquid expanded phase of DPPC. The layer assumes the stable and homogeneous bidimensional structure of a two-dimensional (2D) analogue of a Pickering emulsion. In fact, the presence of particles provides a circular shape to the DPPC domains and stabilizes them against growth and coalescence during the monolayer compression.


Scientific Reports | 2016

2D dynamical arrest transition in a mixed nanoparticle-phospholipid layer studied in real and momentum spaces.

Davide Orsi; Eduardo Guzmán; Libero Liggieri; Francesca Ravera; Beatrice Ruta; Yuriy Chushkin; Tiziano Rimoldi; Luigi Cristofolini

We investigate the interfacial dynamics of a 2D self-organized mixed layer made of silica nanoparticles interacting with phospholipid (DPPC) monolayers at the air/water interface. This system has biological relevance, allowing investigation of toxicological effects of nanoparticles on model membranes and lung surfactants. It might also provide bio-inspired technological solutions, exploiting the self-organization of DPPC to produce a non-trivial 2D structuration of nanoparticles. The characterization of interfacial dynamics yields information on the effects of NPs on the mechanical properties, important to improve performances of systems such as colloidosomes, foams, creams. For this, we combine micro-tracking in real-space with measurement in momentum-space via x-ray photon-correlation spectroscopy and Digital Fourier Microscopy. Using these complementary techniques, we extend the spatial range of investigation beyond the limits of each one. We find a dynamical transition from Brownian diffusion to an arrested state driven by compression, characterized by intermittent rearrangements, compatible with a repulsive glass phase. The rearrangement and relaxation of the monolayer structure results dramatically hindered by the presence of NPs, which is relevant to explain some the mechanical features observed for the dynamic surface pressure response of these systems and which can be relevant for the respiratory physiology and for future drug-delivery composite systems.


Physical Review E | 2010

Slow dynamics in an azopolymer molecular layer studied by x-ray photon correlation spectroscopy.

Davide Orsi; Luigi Cristofolini; M. P. Fontana; E. Pontecorvo; Chiara Caronna; Andrei Fluerasu; Federico Zontone; Anders Madsen

We report the results of x-ray photon correlation spectroscopy (XPCS) experiments on multilayers of a photosensitive azo-polymer which can be softened by photoisomerization. Time correlation functions have been measured at different temperatures and momentum transfers (q) and under different illumination conditions (dark, UV or visible). The correlation functions are well described by the Kohlrausch-Williams-Watts (KWW) form with relaxation times that are proportional to q(-1). The characteristic relaxation times follow the same Vogel-Fulcher-Tammann law describing the bulk viscosity of this polymer. The out-of-equilibrium relaxation dynamics following a UV photoperturbation are accelerated, which is in agreement with a fluidification effect previously measured by rheology. The transient dynamics are characterized by two times correlation function, and dynamical heterogeneity is evidenced by calculating the variance χ of the degree of correlation as a function of ageing time. A clear peak in χ appears at a well defined time τ(C) which scales with q(-1) and with the ageing time, in a similar fashion as previously reported in colloidal suspensions [O. Dauchot, Phys. Rev. Lett. 95, 265701 (2005)]. From an accurate analysis of the correlation functions we could demonstrate a temperature and light dependent cross-over from compressed KWW to simple exponential behavior.


Physical Review E | 2012

Dynamics in dense hard-sphere colloidal suspensions

Davide Orsi; Andrei Fluerasu; Abdellatif Moussaid; Federico Zontone; Luigi Cristofolini; Anders Madsen

The dynamic behavior of a hard-sphere colloidal suspension was studied by x-ray photon correlation spectroscopy and small-angle x-ray scattering over a wide range of particle volume fractions. The short-time mobility of the particles was found to be smaller than that of free particles even at relatively low concentrations, showing the importance of indirect hydrodynamic interactions. Hydrodynamic functions were derived from the data, and for moderate particle volume fractions (Φ≤ 0.40) there is good agreement with earlier many-body theory calculations by Beenakker and Mazur [Physica A 120, 349 (1984)]. Important discrepancies appear at higher concentrations, above Φ≈ 0.40, where the hydrodynamic effects are overestimated by the Beenakker-Mazur theory, but predicted accurately by an accelerated Stokesian dynamics algorithm developed by Banchio and Brady [J. Chem. Phys. 118, 10323 (2003)]. For the relaxation rates, good agreement was also found between the experimental data and a scaling form predicted by the mode coupling theory. In the high concentration range, with the fluid suspensions approaching the glass transition, the long-time diffusion coefficient was compared with the short-time collective diffusion coefficient to verify a scaling relation previously proposed by Segrè and Pusey [Phys. Rev. Lett. 77, 771 (1996)]. We discuss our results in view of previous experimental attempts to validate this scaling law [L. Lurio et al., Phys. Rev. Lett. 84, 785 (2000)].


Journal of Synchrotron Radiation | 2014

Photon statistics and speckle visibility spectroscopy with partially coherent X-rays.

Luxi Li; Paweł Kwaśniewski; Davide Orsi; Lutz Wiegart; Luigi Cristofolini; Chiara Caronna; Andrei Fluerasu

A new approach is proposed for measuring structural dynamics in materials from multi-speckle scattering patterns obtained with partially coherent X-rays. Coherent X-ray scattering is already widely used at high-brightness synchrotron lightsources to measure dynamics using X-ray photon correlation spectroscopy, but in many situations this experimental approach based on recording long series of images (i.e. movies) is either not adequate or not practical. Following the development of visible-light speckle visibility spectroscopy, the dynamic information is obtained instead by analyzing the photon statistics and calculating the speckle contrast in single scattering patterns. This quantity, also referred to as the speckle visibility, is determined by the properties of the partially coherent beam and other experimental parameters, as well as the internal motions in the sample (dynamics). As a case study, Brownian dynamics in a low-density colloidal suspension is measured and an excellent agreement is found between correlation functions measured by X-ray photon correlation spectroscopy and the decay in speckle visibility with integration time obtained from the analysis presented here.


Langmuir | 2016

Hydrophobic Silica Nanoparticles Induce Gel Phases in Phospholipid Monolayers

Davide Orsi; Tiziano Rimoldi; Eduardo Guzmán; Libero Liggieri; Francesca Ravera; Beatrice Ruta; Luigi Cristofolini

Silica nanoparticles (SiNP) can be incorporated in phospholipid layers to form hybrid organic-inorganic bidimensional mesostructures. Controlling the dynamics in these mesostructures paves the way to high-performance drug-delivery systems. Depending on the different hydrophobicity/hydrophilicity of SiNP, recent X-ray reflectivity experiments have demonstrated opposite structural effects. While these are reasonably well understood, less is known about the effects on the dynamics, which in turn determine molecular diffusivity and the possibility of drug release. In this work we characterize the dynamics of a mixed Langmuir layer made of phospholipid and hydrophobic SiNP. We combine X-ray photon correlation spectroscopy and epifluorescence discrete Fourier microscopy to cover more than 2 decades of Q-range (0.3-80 μm(-1)). We obtain evidence for the onset of an arrested state characterized by intermittent stress-relaxation rearrangement events, corresponding to a gel dominated by attractive interactions. We compare this with our previous results from phospholipid/hydrophilic SiNP films, which show an arrested glassy phase of repulsive disks.


Journal of Materials Science: Materials in Medicine | 2016

CeF3-ZnO scintillating nanocomposite for self-lighted photodynamic therapy of cancer

Tiziano Rimoldi; Davide Orsi; Paola Lagonegro; Benedetta Ghezzi; Carlo Galli; Francesca Rossi; Giancarlo Salviati; Luigi Cristofolini

We report on the synthesis and characterization of a composite nanostructure based on the coupling of cerium fluoride (CeF3) and zinc oxide (ZnO) for applications in self-lighted photodynamic therapy. Self-lighted photodynamic therapy is a novel approach for the treatment of deep cancers by low doses of X-rays. CeF3 is an efficient scintillator: when illuminated by X-rays it emits UV light by fluorescence at 325 nm. In this work, we simulate this effect by exciting directly CeF3 fluorescence by UV radiation. ZnO is photo-activated in cascade, to produce reactive oxygen species. This effect was recently demonstrated in a physical mixture of distinct nanoparticles of CeF3 and ZnO [Radiat. Meas. (2013) 59:139–143]. Oxide surface provides a platform for rational functionalization, e.g., by targeting molecules for specific tumors. Our composite nanostructure is stable in aqueous media with excellent optical coupling between the two components; we characterize its uptake and its good cell viability, with very low intrinsic cytotoxicity in dark.


Soft Matter | 2017

The role of optical projection in the analysis of membrane fluctuations

S. Alex Rautu; Davide Orsi; Lorenzo Di Michele; George Rowlands; Pietro Cicuta; Matthew S. Turner

The spectral analysis of thermal fluctuations, or flickering, is a simple and non-invasive method widely used to determine the mechanical properties of artificial and biological lipid membranes. In its most common implementation, the position of the edge of a cell or vesicle is tracked from optical microscopy videos. However, a systematic disagreement with X-ray scattering and micromechanical manipulation data has brought into question the validity of the method. We present an improved analysis protocol that resolves these discrepancies by accounting for the finite vertical resolution of the optics used to image fluctuations.


Philosophical Magazine | 2011

Microscopic dynamics in nanocomposite photosensitive films studied by X-ray photon correlation spectroscopy

Davide Orsi; Luigi Cristofolini; M. P. Fontana; E. Pontecorvo; Chiara Caronna; Andrei Fluerasu; Federico Zontone; Anders Madsen

X-ray photon correlation spectroscopy measurements are reported of microscale dynamics in Langmuir–Schaeffer deposited multilayers of a photosensitive azopolymer with a low concentration of gold nanoparticles embedded. Correlation functions were measured as a function of exchanged momentum and illumination conditions (dark and UV light) and fitted with the Kohlrausch-Williams-Watts (KWW) exponential form. The microscopic dynamic of the nanoparticles was quantified, evidencing a non-Brownian superdiffusive behavior with relaxation times τ ≈ q −1, a result analogous to what previously had been observed in the pure azopolymer. Such behavior has been related to intermittent rearrangements or random dipolar interactions within an elastic medium. Photoperturbation with UV light makes the dynamics faster, in accordance with the reduction of the viscosity of the polymer found by shear rheology, but the KWW form of the correlation functions persists. At constant temperature, the dynamics of the nanoparticles embedded in the polymeric matrix is sensibly faster than the slow microscopic dynamic of the polymer. At the same time, the Vogel–Fulcher–Tammann law for the relaxation times indicates a less pronounced temperature dependence than for the pure polymer, resulting in a slightly lower activation temperature T A.

Collaboration


Dive into the Davide Orsi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Libero Liggieri

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Andrei Fluerasu

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Anders Madsen

European Synchrotron Radiation Facility

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eduardo Guzmán

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge