Davide Prosperi
University of Milan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Davide Prosperi.
Chemical Society Reviews | 2012
Miriam Colombo; Susana Carregal-Romero; Maria Francesca Casula; Lucía Gutiérrez; Maria del Puerto Morales; Ingrid Böhm; Johannes T. Heverhagen; Davide Prosperi; Wolfgang J. Parak
In this review an overview about biological applications of magnetic colloidal nanoparticles will be given, which comprises their synthesis, characterization, and in vitro and in vivo applications. The potential future role of magnetic nanoparticles compared to other functional nanoparticles will be discussed by highlighting the possibility of integration with other nanostructures and with existing biotechnology as well as by pointing out the specific properties of magnetic colloids. Current limitations in the fabrication process and issues related with the outcome of the particles in the body will be also pointed out in order to address the remaining challenges for an extended application of magnetic nanoparticles in medicine.
ACS Nano | 2011
Fabio Corsi; Luisa Fiandra; Clara De Palma; Miriam Colombo; Serena Mazzucchelli; Paolo Verderio; Raffaele Allevi; Antonella Tosoni; Manuela Nebuloni; Emilio Clementi; Davide Prosperi
Subcellular destiny of targeted nanoparticles in cancer cells within living organisms is still an open matter of debate. By in vivo and ex vivo experiments on tumor-bearing mice treated with antibody-engineered magnetofluorescent nanocrystals, in which we combined fluorescence imaging, magnetic relaxation, and trasmission electron microscopy approaches, we provide evidence that nanoparticles are effectively delivered to the tumor by active targeting. These nanocrystals were demonstrated to enable contrast enhancement of the tumor in magnetic resonance imaging. In addition, we were able to discriminate between the fate of the organic corona and the metallic core upon cell internalization. Accurate immunohistochemical analysis confirmed that hybrid nanoparticle endocytosis is mediated by the complex formation with HER2 receptor, leading to a substantial downregulation of HER2 protein expression on the cell surface. These results provide a direct insight into the pathway of internalization and degradation of targeted hybrid nanoparticles in cancer cells in vivo and suggest a potential application of this immunotheranostic nanoagent in neoadjuvant therapy of cancer.
ACS Nano | 2013
Luisa Fiandra; Serena Mazzucchelli; Clara De Palma; Miriam Colombo; Raffaele Allevi; Silvia Sommaruga; Emilio Clementi; Michela Bellini; Davide Prosperi; Fabio Corsi
A great challenge in nanodiagnostics is the identification of new strategies aimed to optimize the detection of primary breast cancer and metastases by the employment of target-specific nanodevices. At present, controversial proof has been provided on the actual importance of surface functionalization of nanoparticles to improve their in vivo localization at the tumor. In the present paper, we have designed and developed a set of multifunctional nanoprobes, modified with three different variants of a model antibody, that is, the humanized monocolonal antibody trastuzumab (TZ), able to selectively target the HER2 receptor in breast cancer cells. Assuming that nanoparticle accumulation in target cells is strictly related to their physicochemical properties, we performed a comparative study of internalization, trafficking, and metabolism in MCF7 cells of multifunctional nanoparticles (MNP) functionalized with TZ or with alternative lower molecular weight variants of the monoclonal antibody, such as the half-chain (HC) and scFv fragments (scFv). Hence, to estimate to what extent the structure of the surface bioligand affects the targeting efficiency of the nanoconjugate, three cognate nanoconstructs were designed, in which only the antibody form was differentiated while the nanoparticle core was maintained unvaried, consisting of an iron oxide spherical nanocrystal coated with an amphiphilic polymer shell. In vitro, in vivo, and ex vivo analyses of the targeting efficiency and of the intracellular fate of MNP-TZ, MNP-HC, and MNP-scFv suggested that the highly stable MNP-HC is the best candidate for application in breast cancer detection. Our results provided evidence that, in this case, active targeting plays an important role in determining the biological activity of the nanoconstruct.
Nature Communications | 2016
Miriam Colombo; Luisa Fiandra; Giulia Alessio; Serena Mazzucchelli; Manuela Nebuloni; Clara De Palma; Karsten Kantner; Beatriz Pelaz; Rany Rotem; Fabio Corsi; Wolfgang J. Parak; Davide Prosperi
Active targeting of nanoparticles to tumours can be achieved by conjugation with specific antibodies. Specific active targeting of the HER2 receptor is demonstrated in vitro and in vivo with a subcutaneous MCF-7 breast cancer mouse model with trastuzumab-functionalized gold nanoparticles. The number of attached antibodies per nanoparticle was precisely controlled in a way that each nanoparticle was conjugated with either exactly one or exactly two antibodies. As expected, in vitro we found a moderate increase in targeting efficiency of nanoparticles with two instead of just one antibody attached per nanoparticle. However, the in vivo data demonstrate that best effect is obtained for nanoparticles with only exactly one antibody. There is indication that this is based on a size-related effect. These results highlight the importance of precisely controlling the ligand density on the nanoparticle surface for optimizing active targeting, and that less antibodies can exhibit more effect.
ChemMedChem | 2008
Sergio Melato; Davide Prosperi; Paolo Coghi; Nicoletta Basilico; Diego Monti
Malaria nowadays remains one of the world’s greatest public health problems. It is responsible for two million deaths per year, mostly African children under five years old, particularly affecting peoples in developing countries. Among the four malaria species that infect humans, the parasite P. falciparum is universally considered the most aggressive. Particularly impressive is its ability in mutating forms in response to administered antiplasmodial treatment, rapidly giving rise to adaptation and resistance. Hence, it is extremely urgent to find an effective combination of antimalarial drugs, not only to improve the efficacy of the therapy, but also to prevent further development of resistance. The discovery of the great potential of artemisinin has significantly encouraged the search in this area of medicinal chemistry. However, artemisinin and its active derivatives are ideal for rapid parasite clearance and clinical recovery, but they need to be combined with longer-acting drugs to prevent recrudescence. Continuous efforts in the search for new drugs together with modeling and analytical investigations on the plasmodia mechanism of invasion have highlighted two possible important targets. The dihydrofolate reductase (DHFR) of P. falciparum is one of the few well-defined targets in antimalarial therapy. This enzyme catalyzes the NADPH-dependent reduction of dihydrofolate to tetrahydrofolate. DHFR is considered the target of cycloguanil 1 and of other antifolates in use for anti-
ACS Nano | 2010
Serena Mazzucchelli; Miriam Colombo; Clara De Palma; Agnese Salvadè; Paolo Verderio; Maria D. Coghi; Emilio Clementi; Paolo Tortora; Fabio Corsi; Davide Prosperi
Highly monodisperse magnetite nanocrystals (MNC) were synthesized in organic media and transferred to the water phase by ultrasound-assisted ligand exchange with an iminodiacetic phosphonate. The resulting biocompatible magnetic nanoparticles were characterized by transmission electron microscopy, dynamic light scattering, and magnetorelaxometry, indicating that this method allowed us to obtain stable particle dispersions with narrow size distribution and unusually high magnetic resonance T(2) contrast power. These nanoparticles were conjugated to a newly designed recombinant monodomain protein A variant, which exhibited a convincingly strong affinity for human and rabbit IgG molecules. Owing to the nature of antibody-protein A binding, tight antibody immobilization occurred through the Fc fragment thus taking full advantage of the targeting potential of bound IgGs. If necessary, monoclonal antibodies could be removed under controlled conditions regenerating the original IgG-conjugatable MNC. As a proof of concept of the utility of our paramagnetic labeling system of human IgGs for biomedical applications, anti-HER-2 monoclonal antibody trastuzumab was immobilized on hybrid MNC (TMNC). TMNC were assessed by immunoprecipitation assay and confocal microscopy effected on HER-2-overexpressing MCF-7 breast cancer cells, demonstrating excellent recognition capability and selectivity for the target membrane receptor.
Trends in Biotechnology | 2014
Svetlana Avvakumova; Miriam Colombo; Paolo Tortora; Davide Prosperi
Nanomedicine has emerged in the past decade as a promising tool for several therapeutic and diagnostic applications. The development of nanoconjugates containing bioactive ligands specific for targeting cancer cell receptors has become a primary objective of modern nanotechnology. The design of ideal nanoconjugates requires optimization of fundamental parameters including size, shape, ligand shell composition, and reduction in nonspecific protein adsorption. Of great importance is the choice of bioconjugation approach, given that it affects the orientation, accessibility, and bioactivity of the targeting molecule. We provide an overview of recent advances in the immobilization of targeting proteins, focusing on methods to control ligand orientation and density, and highlight criteria for nanoparticle design and development required to achieve enhanced receptor-targeting efficiency.
ChemMedChem | 2010
Richard K. Haynes; Wing-Chi Chan; Ho‐Ning Wong; Ka‐Yan Li; Wai‐Keung Wu; Kit‐Man Fan; Herman Ho Yung Sung; Ian D. Williams; Davide Prosperi; Sergio Melato; Paolo Coghi; Diego Monti
The antimalarial drug methylene blue (MB) affects the redox behaviour of parasite flavin‐dependent disulfide reductases such as glutathione reductase (GR) that control oxidative stress in the malaria parasite. The reduced flavin adenine dinucleotide cofactor FADH2 initiates reduction to leucomethylene blue (LMB), which is oxidised by oxygen to generate reactive oxygen species (ROS) and MB. MB then acts as a subversive substrate for NADPH normally required to regenerate FADH2 for enzyme function. The synergism between MB and the peroxidic antimalarial artemisinin derivative artesunate suggests that artemisinins have a complementary mode of action. We find that artemisinins are transformed by LMB generated from MB and ascorbic acid (AA) or N‐benzyldihydronicotinamide (BNAH) in situ in aqueous buffer at physiological pH into single electron transfer (SET) rearrangement products or two‐electron reduction products, the latter of which dominates with BNAH. Neither AA nor BNAH alone affects the artemisinins. The AA–MB SET reactions are enhanced under aerobic conditions, and the major products obtained here are structurally closely related to one such product already reported to form in an intracellular medium. A ketyl arising via SET with the artemisinin is invoked to explain their formation. Dihydroflavins generated from riboflavin (RF) and FAD by pretreatment with sodium dithionite are rapidly oxidised by artemisinin to the parent flavins. When catalytic amounts of RF, FAD, and other flavins are reduced in situ by excess BNAH or NAD(P)H in the presence of the artemisinins in the aqueous buffer, they are rapidly oxidised to the parent flavins with concomitant formation of two‐electron reduction products from the artemisinins; regeneration of the reduced flavin by excess reductant maintains a catalytic cycle until the artemisinin is consumed. In preliminary experiments, we show that NADPH consumption in yeast GR with redox behaviour similar to that of parasite GR is enhanced by artemisinins, especially under aerobic conditions. Recombinant human GR is not affected. Artemisinins thus may act as antimalarial drugs by perturbing the redox balance within the malaria parasite, both by oxidising FADH2 in parasite GR or other parasite flavoenzymes, and by initiating autoxidation of the dihydroflavin by oxygen with generation of ROS. Reduction of the artemisinin is proposed to occur via hydride transfer from LMB or the dihydroflavin to O1 of the peroxide. This hitherto unrecorded reactivity profile conforms with known structure–activity relationships of artemisinins, is consistent with their known ability to generate ROS in vivo, and explains the synergism between artemisinins and redox‐active antimalarial drugs such as MB and doxorubicin. As the artemisinins appear to be relatively inert towards human GR, a putative model that accounts for the selective potency of artemisinins towards the malaria parasite also becomes apparent. Decisively, ferrous iron or carbon‐centered free radicals cannot be involved, and the reactivity described herein reconciles disparate observations that are incompatible with the ferrous iron–carbon radical hypothesis for antimalarial mechanism of action. Finally, the urgent enquiry into the emerging resistance of the malaria parasite to artemisinins may now in one part address the possibilities either of structural changes taking place in parasite flavoenzymes that render the flavin cofactor less accessible to artemisinins or of an enhancement in the ability to use intra‐erythrocytic human disulfide reductases required for maintenance of parasite redox balance.
Angewandte Chemie | 2012
Miriam Colombo; Silvia Sommaruga; Serena Mazzucchelli; Laura Polito; Paolo Verderio; Patrizia Galeffi; Fabio Corsi; Paolo Tortora; Davide Prosperi
Particularly suitable: An N-terminal serine mutant of anti-HER2 scFv antibody was conjugated to polymer-coated magnetofluorescent nanoparticles by strain-promoted alkyne-nitrone cycloaddition. The resulting nanoparticles (see scheme) proved effective in targeting and labeling HER2-positive breast cancer cells.
Journal of the American Chemical Society | 2008
Laura Polito; Miriam Colombo; Diego Monti; Sergio Melato; Enrico Caneva; Davide Prosperi
A major challenge in magnetic nanoparticle synthesis and (bio)functionalization concerns the precise characterization of the nanoparticle surface ligands. We report the first analytical NMR investigation of organic ligands stably anchored on the surface of superparamagnetic nanoparticles (MNPs) through the development of a new experimental application of high-resolution magic-angle spinning (HRMAS). The conceptual advance here is that the HRMAS technique, already being used for MAS NMR analysis of gels and semisolid matrixes, enables the fine-structure-resolved characterization of even complex organic molecules bound to paramagnetic nanocrystals, such as nanosized iron oxides, by strongly decreasing the effects of paramagnetic disturbances. This method led to detail-rich, well-resolved (1)H NMR spectra, often with highly structured first-order couplings, essential in the interpretation of the data. This HRMAS application was first evaluated and optimized using simple ligands widely used as surfactants in MNP synthesis and conjugation. Next, the methodology was assessed through the structure determination of complex molecular architectures, such as those involved in MNP3 and MNP4. The comparison with conventional probes evidences that HRMAS makes it possible to work with considerably higher concentrations, thus avoiding the loss of structural information. Consistent 2D homonuclear (1)H- (1)H and (1)H- (13)C heteronuclear single-quantum coherence correlation spectra were also obtained, providing reliable elements on proton signal assignments and carbon characterization and opening the way to (13)C NMR determination. Notably, combining the experimental evidence from HRMAS (1)H NMR and diffusion-ordered spectroscopy performed on the hybrid nanoparticle dispersion confirmed that the ligands were tightly bound to the particle surface when they were dispersed in a ligand-free solvent, while they rapidly exchanged when an excess of free ligand was present in solution. In addition to HRMAS NMR, matrix-assisted laser desorption ionization time-of-flight MS analysis of modified MNPs proved very valuable in ligand mass identification, thus giving a sound support to NMR characterization achievements.