Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Davide Tiana is active.

Publication


Featured researches published by Davide Tiana.


Journal of the American Chemical Society | 2013

Engineering the Optical Response of the Titanium-MIL-125 Metal− Organic Framework through Ligand Functionalization

Christopher H. Hendon; Davide Tiana; Marc Fontecave; Clément Sanchez; Loïc D'Arras; Capucine Sassoye; Laurence Rozes; Caroline Mellot-Draznieks; Aron Walsh

Herein we discuss band gap modification of MIL-125, a TiO2/1,4-benzenedicarboxylate (bdc) metal-organic framework (MOF). Through a combination of synthesis and computation, we elucidated the electronic structure of MIL-125 with aminated linkers. The band gap decrease observed when the monoaminated bdc-NH2 linker was used arises from donation of the N 2p electrons to the aromatic linking unit, resulting in a red-shifted band above the valence-band edge of MIL-125. We further explored in silico MIL-125 with the diaminated linker bdc-(NH2)2 and other functional groups (-OH, -CH3, -Cl) as alternative substitutions to control the optical response. The bdc-(NH2)2 linking unit was predicted to lower the band gap of MIL-125 to 1.28 eV, and this was confirmed through the targeted synthesis of the bdc-(NH2)2-based MIL-125. This study illustrates the possibility of tuning the optical response of MOFs through rational functionalization of the linking unit, and the strength of combined synthetic/computational approaches for targeting functionalized hybrid materials.


Physical Chemistry Chemical Physics | 2012

Conductive metal–organic frameworks and networks: fact or fantasy?

Christopher H. Hendon; Davide Tiana; Aron Walsh

Electrical conduction is well understood in materials formed from inorganic or organic building blocks, but their combination to produce conductive hybrid frameworks and networks is an emerging and rapidly developing field of research. Self-assembling organic-inorganic compounds offer immense potential for functionalising material properties for a wide scope of applications including solar cells, light emitters, gas sensors and bipolar transparent conductors. The flexibility of combining two distinct material classes into a single solid-state system provides an almost infinite number of chemical and structural possibilities; however, there is currently no systematic approach established for designing new compositions and configurations with targeted electronic or optical properties. We review the current status in the field, in particular, the range of hybrid systems reported to date and the important role of materials modelling in the field. From theoretical arguments, the Mott insulator-to-metal transition should be possible in semiconducting metal-organic frameworks, but has yet to be observed. The question remains as to whether electro-active hybrid materials will evolve from chemical curiosities towards practical applications in the near term.


Journal of Physical Chemistry A | 2011

Experimental and Theoretical Charge Density Studies at Subatomic Resolution

A. Fischer; Davide Tiana; Wolfgang Scherer; K. Batke; G. Eickerling; H. Svendsen; N. Bindzus; Bo B. Iversen

Analysis of accurate experimental and theoretical structure factors of diamond and silicon reveals that the contraction of the core shell due to covalent bond formation causes significant perturbations of the total charge density that cannot be ignored in precise charge density studies. We outline that the nature and origin of core contraction/expansion and core polarization phenomena can be analyzed by experimental studies employing an extended Hansen-Coppens multipolar model. Omission or insufficient treatment of these subatomic charge density phenomena might yield erroneous thermal displacement parameters and high residual densities in multipolar refinements. Our detailed studies therefore suggest that the refinement of contraction/expansion and population parameters of all atomic shells is essential to the precise reconstruction of electron density distributions by a multipolar model. Furthermore, our results imply that also the polarization of the inner shells needs to be adopted, especially in cases where second row or even heavier elements are involved in covalent bonding. These theoretical studies are supported by direct multipolar refinements of X-ray powder diffraction data of diamond obtained from a third-generation synchrotron-radiation source (SPring-8, BL02B2).


Journal of Chemical Theory and Computation | 2014

Transferable Force Field for Metal–Organic Frameworks from First-Principles: BTW-FF

Jessica K. Bristow; Davide Tiana; Aron Walsh

We present an ab-initio derived force field to describe the structural and mechanical properties of metal–organic frameworks (or coordination polymers). The aim is a transferable interatomic potential that can be applied to MOFs regardless of metal or ligand identity. The initial parametrization set includes MOF-5, IRMOF-10, IRMOF-14, UiO-66, UiO-67, and HKUST-1. The force field describes the periodic crystal and considers effective atomic charges based on topological analysis of the Bloch states of the extended materials. Transferable potentials were developed for the four organic ligands comprising the test set and for the associated Cu, Zn, and Zr metal nodes. The predicted materials properties, including bulk moduli and vibrational frequencies, are in agreement with explicit density functional theory calculations. The modal heat capacity and lattice thermal expansion are also predicted.


Physical Chemistry Chemical Physics | 2011

Restoring orbital thinking from real space descriptions: bonding in classical and non-classical transition metal carbonyls

Davide Tiana; E. Francisco; M. A. Blanco; Piero Macchi; Angelo Sironi; A. Martín Pendás

A combined strategy that unifies our interacting quantum atoms approach (IQA), a chemically intuitive energetic perspective within the quantum theory of atoms in molecules (QTAIM), the domain natural orbitals obtained by the diagonalization of the charge-weighted domain-averaged Fermi hole (DAFH), and the statistical analyses of chemical bonding provided by the electron number distribution functions (EDF) is presented. As shown, it allows for recovering traditional orbital images from the orbital invariant descriptions of QTAIM. It does also provide bonding indices (like bond orders) and bond energetics, all in a per orbital basis, still invariant manner, using a single unified framework. The procedure is applied to show how the Dewar, Chatt, and Ducanson model of bonding in simple transition metal carbonyls may be recovered in the real space. The balance between the number of σ-donated and π-backdonated electrons is negative in classical compounds and positive in non-classical ones. The energetic strength of backdonation is, however, smaller than that of donation. Our technique surpasses conventional orbital models by providing physically sound, quantitative energetics of chemical bonds (or interactions) together with effective one-electron pictures, all for arbitrary wavefunctions.


Journal of Physical Chemistry C | 2016

Free Energy of Ligand Removal in the Metal-Organic Framework UiO-66

Jessica K. Bristow; Katrine L. Svane; Davide Tiana; Jonathan M. Skelton; Julian D. Gale; Aron Walsh

We report an investigation of the “missing-linker phenomenon” in the Zr-based metal–organic framework UiO-66 using atomistic force field and quantum chemical methods. For a vacant benzene dicarboxylate ligand, the lowest energy charge-capping mechanism involves acetic acid or Cl–/H2O. The calculated defect free energy of formation is remarkably low, consistent with the high defect concentrations reported experimentally. A dynamic structural instability is identified for certain higher defect concentrations. In addition to the changes in material properties upon defect formation, we assess the formation of molecular aggregates, which provide an additional driving force for ligand loss. These results are expected to be of relevance to a wide range of metal–organic frameworks.


Chemical Communications | 2014

Ligand design for long-range magnetic order in metal-organic frameworks

Davide Tiana; Christopher H. Hendon; Aron Walsh

We report a class of ligands that are candidates to construct metal-organic frameworks with long-range magnetic order between transition metal centres. Direct quantum chemical calculations predict Néel temperatures exceeding 100 K for the case of Mn.


Journal of Physical Chemistry A | 2009

Using Pseudopotentials within the Interacting Quantum Atoms Approach

Davide Tiana; E. Francisco; M. A. Blanco; Ángel Martín Pendás

A general strategy to extend the interacting quantum atoms (IQA) approach to pseudopotential or effective core potential electronic structure calculations is presented. With the protocol proposed here, the scope of IQA thinking opens to chemical bonding problems in heavy-atom systems, as well as to larger molecules than those presently allowed by computational limitations. We show that, provided that interatomic surfaces are computed from core-reconstructed densities, reasonable results are obtained by integrating reduced density matrices built from the pseudowave functions. Comparison with all-electron results in a few test systems shows that exchange-correlation energies are better reproduced than Coulombic contributions, an effect which is traced to inadequate atomic populations and leakage of the core population into the surrounding quantum atoms.


Journal of Chemical Physics | 2015

Influence of the exchange-correlation functional on the quasi-harmonic lattice dynamics of II-VI semiconductors

Jonathan M. Skelton; Davide Tiana; Stephen C. Parker; Atsushi Togo; Isao Tanaka; Aron Walsh

We perform a systematic comparison of the finite-temperature structure and properties of four bulk semiconductors (PbS, PbTe, ZnS, and ZnTe) predicted by eight popular exchange-correlation functionals from quasi-harmonic lattice-dynamics calculations. The performance of the functionals in reproducing the temperature dependence of a number of material properties, including lattice parameters, thermal-expansion coefficients, bulk moduli, heat capacities, and phonon frequencies, is evaluated quantitatively against available experimental data. We find that the phenomenological over- and under-binding characteristics of the local-density approximation and the PW91 and Perdew-Burke-Enzerhof (PBE) generalised-gradient approximation (GGA) functionals, respectively, are exaggerated at finite temperature, whereas the PBEsol GGA shows good general performance across all four systems. The Tao-Perdew-Staroverov-Scuseria (TPSS) and revTPSS meta-GGAs provide relatively small improvements over PBE, with the latter being better suited to calculating structural and dynamical properties, but both are considerably more computationally demanding than the simpler GGAs. The dispersion-corrected PBE-D2 and PBE-D3 functionals perform well in describing the lattice dynamics of the zinc chalcogenides, whereas the lead chalcogenides appear to be challenging for these functionals. These findings show that quasi-harmonic calculations with a suitable functional can predict finite-temperature structure and properties with useful accuracy, and that this technique can serve as a means of evaluating the performance of new functionals in the future.


Journal of Materials Chemistry C | 2013

Thermodynamic and electronic properties of tunable II–VI and IV–VI semiconductor based metal–organic frameworks from computational chemistry

Christopher H. Hendon; Davide Tiana; Thomas P. Vaid; Aron Walsh

Optoelectric control of metal–organic frameworks would open up a new area of applications for hybrid materials. This article reports the calculated thermodynamic and electronic properties of a family of M3(C6X6) metal–organic frameworks (M = Mg, Ca, Zn, Cd, Hg, Ge, Sn, Pb; X = O, S, Se, Te). Herein, we present a systematic approach for studying families of hybrid compounds, and describe extended tunability of their electronic and enthalpic properties through compositional control. It was shown that the formation enthalpy is dictated by the stability of the ligand, and the band gap is tunable depending on both metal and chalcogenide selection. Five compounds were found to be candidate semiconductors as they combine thermodynamic stability with band gaps in the visible range of the electromagnetic spectrum.

Collaboration


Dive into the Davide Tiana's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher H. Hendon

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Berend Smit

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge