Davide Tranchida
University of Palermo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Davide Tranchida.
Measurement Science and Technology | 2006
Davide Tranchida; Stefano Piccarolo; R A C Deblieck
The convolution of tip shape on sample topography can introduce significant inaccuracy in an AFM image, when the tip radius is comparable to the typical dimension of the sample features to be observed. The blind estimation method allows one to obtain information on the AFM tip through an unknown characterizer sample and thus to perform the deconvolution of the tip shape from an image. When applying the blind estimation method to determine the AFM tip shape, some apparently trivial issues relating to the experimental operating parameters must be taken into account. In this paper, the effects of the operating parameters, e.g., sampling intervals (resolution) and instrumental noise, have been taken into account for the practical use of blind estimation and the result is that instrumental noise tends to provide a smaller estimation of the tip size, while larger sampling intervals provide a larger value of it. This paper presents guidelines to those effects in AFM and appropriate experimental conditions for applying the blind estimation method to obtain more reliable data on tip radius and therefore on sample topography.
Applied Physics Letters | 2006
Davide Tranchida; Stefano Piccarolo; Joachim Loos; Aa Alexander Alexeev
The Oliver and Pharr [J. Mater. Res. 7, 1564 (1992)] procedure is a widely used tool to analyze nanoindentation force curves obtained on metals or ceramics. Its application to polymers is, however, difficult, as Young’s moduli are commonly overestimated mainly because of viscoelastic effects and pileup. However, polymers spanning a large range of morphologies have been used in this work to introduce a phenomenological correction factor. It depends on indenter geometry: sets of calibration indentations have to be performed on some polymers with known elastic moduli to characterize each indenter.
Langmuir | 2012
Mohammad Raoufi; Davide Tranchida; Holger Schönherr
We report on the successful replication of the smallest pores in anodized aluminum oxide (AAO) via the layer-by-layer (LBL) deposition of polyelectrolytes to date to yield free-standing, open nanotubes with inner and outer diameters (±2σ) down to 37 ± 4 and 52 ± 19 nm, respectively. This work is based on the fabrication of defined arrays of highly regular nanopores by anodic oxidation of aluminum. Pores with pore diameters between 53 ± 9 and 356 ± 14 nm and interpore distances between 110 ± 3 and 500 ± 17 nm were obtained using an optimized two-step anodization procedure. 3-(Ethoxydimethylsilyl)propylamine-coated pores were replicated by alternating LBL deposition of poly(styrenesulfonate) and poly(allylamine). The detrimental adsorption of polyelectrolyte on the top surface of the template that typically results in partial pore blocking was eliminated by controlling the surface energy of the top surface via deposition of an ultrathin gold layer. The thickness of the deposited LBL multilayer assembly at the pore orifice agreed to within the experimental error with the thicknesses measured by variable angle spectroscopic ellipsometry and atomic force microscopy (AFM) for layers assembled on flat substrates. The selective dissolution of the alumina template afforded free-standing, open polymer nanotubes that were stable without any cross-linking procedure. The nanotubes thus obtained possessed mean outer diameters as small as 52 nm, limited by the size of the AAO template.
Langmuir | 2011
Haider Bayat; Davide Tranchida; Bo Song; Wiktoria Walczyk; Elena Sperotto; Holger Schönherr
The coadsorption of alkanethiols on noble metals has been recognized for a long time as a suitable means of affording surfaces with systematically varied wettability and other properties. In this article, we report on a comparative study of the composition of the mixed self-assembled monolayers (SAMs) obtained (i) by the coadsorption of octadecanethiol (ODT) and 16-mercaptohexadecanoic acid (MHDA) from ethanol and chloroform onto gold substrates and (ii) by microcontact printing using poly(dimethyl siloxane) (PDMS) stamps. SAMs prepared by coadsorption from solution showed a preferential adsorption of ODT for both solvents, but this trend was reversed in microcontact-printed SAMs when using chloroform as a solvent, as evidenced by contact angle and Fourier transform infrared (FTIR) spectroscopy measurements. An approximately linear relationship between the static contact angle and the degree of swelling with different solvents was observed, which suggests that the surface composition can be controlled by the interaction of the solvent and the PDMS elastomer. The altered preference is attributed to the different partitioning of the two thiols into solvent-swelled PDMS, as shown by (1)H NMR spectroscopy. Finally, molecularly mixed binary SAMs on ODT and MHDA on template-stripped gold were applied to study the effect of surface nanobubbles on wettability by atomic force microscopy (AFM). With a decreasing macroscopic contact angle measured through water, the nanoscopic contact angle was found to decrease as well.
Archive | 2009
Davide Tranchida; Stefano Piccarolo
The analysis of mechanical properties on a nanometer scale is a useful tool for combining information concerning texture organization obtained by microscopy with the properties of individual components. Moreover, this technique promotes the understanding of the hierarchical arrangement in complex natural materials as well in the case of simpler morphologies arising from industrial processes. Atomic Force Microscopy (AFM) can bridge morphological information, obtained with outstanding resolution, to local mechanical properties. When performing an AFM nanoindentation, the rough force curve, i.e., the plot of the voltage output from the photodiode vs. the voltage applied to the piezo-scanner, can be translated into a curve of the applied load vs. the penetration depth after a series of preliminary determinations and calibrations. However, the analysis of the unloading portion of the force curves collected for polymers does not lead to a correct evaluation of Young’s modulus. The high slope of the unloading curves is not linked to an elastic behavior, as would be expected, but rather to a viscoelastic effect. This can be argued on the basis that the unloading curves are superimposed on the loading curves in the case of an ideal elastic behavior, as for rubbers, or generally in the case of materials with very short relaxation times. In contrast, when the relaxation time of the sample is close to or even much larger than the indentation time scale, very high slopes are recorded.
10TH ESAFORM CONFERENCE ON MATERIAL FORMING | 2007
Davide Tranchida; Stefano Piccarolo
A nanoindentation technique using an Atomic Force Microscope (AFM) was applied to characterize the mechanical behaviour of several polymeric samples. Samples with well‐defined morphologies, spanning from amorphous to rubbery and semi‐crystalline ones, were studied for identifying experimental conditions determining contact mechanics within the elastic range such that Young’s moduli could be drawn by the Sneddon’s elastic contact model. Structure homogeneity, up to the scale of macroscopic samples used to evaluate the elastic moduli, allowed a successful comparison of these values with those determined by macroscopic tension test on full size samples (a few mm), provided that comparable “overall” deformation rates are used (approx. 10∧−5 m/s). Therefore, it is possible to scale down the measurement of mechanical properties by AFM to the typical resolution of nanoindentations. With this method the distribution of mechanical properties on systems with a spatial distribution of morphology (injection moulded s...
Macromolecules | 2006
Davide Tranchida; Stefano Piccarolo; Maria Soliman
Macromolecules | 2007
Davide Tranchida; Stefano Piccarolo; Joachim Loos; Alexander Alexeev
Macromolecules | 2011
Ang Li; Edmondo M. Benetti; Davide Tranchida; Jarred N. Clasohm; Holger Schönherr; Nicholas D. Spencer
Macromolecules | 2008
Jing Song; Davide Tranchida; G. Julius Vancso