Davids Fridmanis
Latvian Biomedical Research and Study centre
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Davids Fridmanis.
PLOS ONE | 2013
Ilze Radovica; Davids Fridmanis; Iveta Vaivade; Liene Nikitina-Zake; Janis Klovins
The heritability of high-density lipoprotein cholesterol (HDL-C) level is estimated at approximately 50%. Recent genome-wide association studies have identified genes involved in regulation of high-density lipoprotein cholesterol (HDL-C) levels. The precise genetic profile determining heritability of HDL-C however are far from complete and there is substantial room for further characterization of genetic profiles influencing blood lipid levels. Here we report an association study comparing the distribution of 139 SNPs from more than 30 genes between groups that represent extreme ends of HDL-C distribution. We genotyped 704 individuals that were selected from Genome Database of Latvian Population. 10 SNPs from CETP gene showed convincing association with low HDL-C levels (rs1800775, rs3764261, rs173539, rs9939224, rs711752, rs708272, rs7203984, rs7205804, rs11076175 and rs9929488) while 34 SNPs from 10 genes were nominally associated (p<0.05) with HDL-C levels. We have also identified haplotypes from CETP with distinct effects on determination of HDL-C levels. Our conclusion: So far the SNPs in CETP gene are identified as the most common genetic factor influencing HDL-C levels in the representative sample from Latvian population.
Gene | 2013
Ineta Kalnina; Linda Zaharenko; Iveta Vaivade; Vita Rovite; Liene Nikitina-Zake; Raitis Peculis; Davids Fridmanis; Kristine Geldnere; Josefin A. Jacobsson; Markus Sällman Almén; Valdis Pirags; Helgi B. Schiöth; Janis Klovins
Variations in the FTO gene and near the TMEM18 gene are risk factors for common form of obesity, but have also been linked with type 2 diabetes (T2D). Our aim was to investigate the contribution of these variants to risk of T2D in a population in Latvia. Four single nucleotide polymorphisms (SNP) in the first and fourth intronic regions of FTO and one close to TMEM18 were genotyped in 987 patients with T2D and 1080 controls selected from the Latvian Genome Data Base (LGDB). We confirmed association of SNPs in the first intron (rs11642015, rs62048402 and rs9939609) of FTO and rs7561317 representing the TMEM18 locus with T2D. Association between SNP in FTO and T2D remained significant after correction for body mass index (BMI). The rs57103849 located in the fourth intron of FTO and rs7561317 in TMEM18 showed BMI independent association with younger age at diagnosis of T2D. Our results add to the evidence that BMI related variants in and near FTO and TMEM18 may increase the risk for T2D not only through secondary effects of obesity. The influence of variants in the fourth intron of the FTO gene on development of T2D may be mediated by mechanisms other than those manifested by SNPs in the first intron of the same gene.
Science of The Total Environment | 2017
Olga Muter; Ingus P erkons; Turs Selga; Andrejs Berzins; Dita Gudra; Ilze Radovica-Spalvina; Davids Fridmanis; Vadims Bartkevics
Municipal wastewater containing 21 pharmaceutical compounds, as well as activated sludge obtained from the aeration tank of the same wastewater treatment plant were used in lab-scale biodegradation experiments. The concentrations of pharmaceutical compounds were determined by high-performance liquid chromatography coupled to Orbitrap high-resolution mass spectrometry and ranged from 13.2ng/L to 51.8μg/L. Activated sludge was characterized in the terms of phylogenetic and catabolic diversity of microbial community, as well as its morphology. Proteobacteria (24.0%) represented the most abundant phylum, followed by Bacteroidetes (19.8%) and Firmicutes (13.2%). Bioaugmentation of wastewater with activated sludge stimulated the biodegradation process for 14 compounds. The concentration of carbamazepine in non-amended and bioaugmented WW decreased during the first 17h up to 30% and 70%, respectively. Diclofenac and ibuprofen demonstrated comparatively slow removal. The stimulating effect of the added nutrients was observed for the degradation of almost all pharmaceuticals detected in WW. The most pronounced effect of nutrients was found for erythromycin. The results were compared with those obtained for the full-scale WW treatment process.
Molecular Biology Reports | 2012
Vita Ignatovica; Gustavs Latkovskis; Raitis Peculis; Kaspars Megnis; Helgi B. Schiöth; Iveta Vaivade; Davids Fridmanis; Valdis Pirags; Andrejs Erglis; Janis Klovins
The purinergic 1 receptor (P2RY1) has been implicated in development of heart disease and in individual pharmacodynamic response to anticoagulant therapies. However, the association of polymorphisms in the P2RY1 gene with myocardial infarction (MI), and its associated conditions, has yet to be reported in the literature. We evaluated seven known SNPs in P2RY1 for association with MI in a Latvian population. Seven independent parameters that are related to MI [body mass index (BMI), type 2 diabetes (T2D), angina pectoris, hypertension, hyperlipidemia, atrial fibrillation and heart failure] were investigated. No significant association with MI was observed for any of the polymorphisms. Those SNPs for which the P value was close to significance were located in coding or promoter regions. Intriguingly, carriers of the minor allele in the P2RY1 gene locus showed a tendency towards higher onset age for MI, suggesting a possible protective effect of these SNPs against MI or their contribution in progression as opposed to onset. Finally, a linkage disequilibrium (LD) plot was generated for these polymorphisms in the Latvian population. The results of this study suggest that the role of P2RY1 in individuals from Latvian population is likely to be principally involved in platelet aggregation and thromboembolic diseases, and not as a significant contributing factor to the global metabolic syndrome.
Journal of Hazardous Materials | 2017
Madars Davids; Dita Gudra; Ilze Radovica-Spalvina; Davids Fridmanis; Vadims Bartkevics; Olga Muter
Ibuprofen (IBP) is ranked at the 4th place among 57 pharmaceutical compounds according to the number of citations in prioritization documents. The response of microbial community of activated sludge to IBP was studied at the concentrations of 50-5000mg/L. Batch incubation was performed in an OxiTop® device for 21days. The reduction of biological oxygen demand depended on the IBP concentration and varied in the range from 321 to 107mg O2/L. Massive DNA sequencing analysis of the activated sludge revealed that Proteobacteria became more dominant when grown in the presence of IBP. Microbial diversity was reduced in the presence of 500-1000mg/L IBP, but increased again in the presence of 5000mg/L IBP, despite the domination of Enterobacteriales (48.1%) in this sample. Incubation of activated sludge in the presence of 1000mg/L IBP led to an increased occurrence of ciprofloxacin-resistant bacteria. The use of Eosin Methylene Blue Agar for disc diffusion assay was shown to be more appropriate in order to reveal the changes in antibiotic resistance. The predominance of Enterobacteriales in the activated sludge is suggested as one of the possible explanations of the enhanced resistance to ciprofloxacin.
Frontiers in Endocrinology | 2017
Davids Fridmanis; Ance Roga; Janis Klovins
Coincidentally, the release of this Research Topic in Frontiers in Endocrinology takes place 25 years after the discovery of the adrenocorticotropic hormone receptor (ACTHR) by Mountjoy and colleagues. In subsequent years, following the discovery of other types of mammalian melanocortin receptors (MCRs), ACTHR also became known as melanocortin type 2 receptor (MC2R). At present, five types of MCRs have been reported, all of which share significant sequence similarity at the amino acid level, and all of which specifically bind melanocortins (MCs)—a group of biologically active peptides generated by proteolysis of the proopiomelanocortin precursor. All MCs share an identical –H–F–R–W– pharmacophore sequence. α-Melanocyte-stimulating hormone (α-MSH) and adrenocorticotropic hormone (ACTH) are the most extensively studied MCs and are derived from the same region. Essentially, α-MSH is formed from the first 13 amino acid residues of ACTH. ACTHR is unique among MCRs because it binds one sole ligand—ACTH, which makes it a very attractive research object for molecular pharmacologists. However, much research has failed, and functional studies of this receptor are lagging behind other MCRs. The reason for these difficulties has already been outlined by Mountjoy and colleagues in their publication on ACTHR coding sequence discovery where the Cloudman S91 melanoma cell line was used for receptor expression because it was a “more sensitive assay system.” Subsequent work showed that ACTHR could be successfully expressed only in endogenous MCR-expressing cell lines, since in other cell lines it is retained within the endoplasmic reticulum. The resolution of this methodological problem came in 2005 with the discovery of melanocortin receptor accessory protein, which is required for the formation of functionally active ACTHR. The decade that followed this discovery was filled with exciting research that provided insight into the molecular mechanisms underlying the action of ACTHR. The purpose of this review is to summarize the advances in this fascinating research field.
Journal of Molecular Endocrinology | 2014
Davids Fridmanis; Ramona Petrovska; Dace Pjanova; Helgi B. Schiöth; Janis Klovins
The proteolysis of the pro-opiomelanocortin precursor results in the formation of melanocortins (MCs), a group of peptides that share the conserved -H-F-R-W- sequence, which acts as a pharmacophore for five subtypes of MC receptors (MCRs). MC type 2 receptor (MC2R; also known as ACTHR) is the most specialized of all the MCRs. It is predominantly expressed in the adrenal cortex and specifically binds ACTH. Unlike other MCRs, it requires melanocortin receptor accessory protein 1 (MRAP) for formation of active receptor and for its transport to the cell membrane. The molecular mechanisms underlying this specificity remain poorly understood. In this study, we used directed mutagenesis to investigate the role of various short MC2R sequence segments in receptor membrane trafficking and specific activation upon stimulation with ligands. The strategy of the study was to replace two to five amino acid residues within one MC2R segment with the corresponding residues of MC4R. In total, 20 recombinant receptors C-terminally fused to enhanced green fluorescent protein were generated and their membrane trafficking efficiencies and cAMP response upon stimulation with α-MSH and ACTH(1-24) were estimated during their stand-alone expression and coexpression with MRAP. Our results indicate that both the motif that determines the ligand-recognition specificity and the intracellular retention signal are formed by a specific extracellular structure, which is supported by the correct alignment of the transmembrane domains. Our results also indicate that the aromatic-residue-rich segment of the second extracellular loop is involved in the effects mediated by the second ACTH pharmacophore (-K-K-R-R-).
Experimental and Clinical Endocrinology & Diabetes | 2012
Ineta Kalnina; Kristine Geldnere; L. Tarasova; Liene Nikitina-Zake; Raitis Peculis; Davids Fridmanis; Valdis Pirags; Janis Klovins
Polymorphisms in the gene coding for transcription factor 7 like 2 (TCF7L2) are recognized as the strongest common genetic risk factors for type 2 diabetes (T2D) across multiple ethnicities. This study was conducted to evaluate an association between TCF7L2 variants and diabetes susceptibility in the population of Latvia. We genotyped 4 single nucleotide polymorphisms (SNP) rs7901695, rs7903146, rs11196205 and rs12255372 in 1 093 controls and 1 043 diabetic subjects. Association with T2D was found for 3 SNPs rs7901695, rs7903146 and rs12255372 in the whole sample (under an additive genetic model, the adjusted odds ratios (OR) were 1.26, 95% CI [1.08-1.48], P=0.003; OR=1.32, 95% CI [1.12-1.55], P=0.001 and OR=1.35, 95% CI [1.15-1.60], P=0.0004 respectively). In addition observed effects on T2D susceptibility for analysed SNPs were higher among subjects with BMI under 30 kg/m². The impact of TCF7L2 variation on T2D risk in Latvian population is compatible with that demonstrated by a range of studies conducted in various ethnic groups.
Central European Journal of Biology | 2011
Vita Ignatovica; Ramona Petrovska; Davids Fridmanis; Janis Klovins
The melanocortin 4 receptor (MC4R) is involved in the regulation of energy homeostasis and is known as one of the major hypothalamic regulators of food intake. Several studies have shown that replacement of aspartic acid at position 126 of the MC4R abolishes the ligand binding. We used the modified yeast Saccharomyces cerevisiae strain MMY28 to functionally express the MC4R and characterise the importance of this amino acid for ligand based activation of the receptor. The efficiency of the functional expression system was estimated by activation with αMSH, ACTH and THIQ and compared with cAMP response in mammalian cells. We generated the library of MC4R mutants randomised at the amino acid position 126. Recombinant MC4R clones were screened for the αMSH induced activity in yeast. From 9 different amino acids obtained only the natural aspartic acid displayed the ligand dependent activity of MC4R. The MC4R variants with glutamic acid and leucine at position 126, however, displayed higher background activity than other amino acid substitutions. The results suggest that the yeast expression system is suitable for screening of the MC4R receptor ligands and that the substitution of aspartic acid at position 126 of MC4R by different amino acids functionally inactivates the receptor.
PLOS ONE | 2018
Ilze Elbere; Ineta Kalnina; Ivars Silamikelis; Ilze Konrade; Linda Zaharenko; Kristine Sekace; Ilze Radovica-Spalvina; Davids Fridmanis; Dita Gudra; Valdis Pirags; Janis Klovins
Background Metformin is a widely used first-line drug for treatment of type 2 diabetes. Despite its advantages, metformin has variable therapeutic effects, contraindications, and side effects. Here, for the very first time, we investigate the short-term effect of metformin on the composition of healthy human gut microbiota. Methods We used an exploratory longitudinal study design in which the first sample from an individual was the control for further samples. Eighteen healthy individuals were treated with metformin (2 × 850 mg) for 7 days. Stool samples were collected at three time points: prior to administration, 24 hours and 7 days after metformin administration. Taxonomic composition of the gut microbiome was analyzed by massive parallel sequencing of 16S rRNA gene (V3 region). Results There was a significant reduction of inner diversity of gut microbiota observed already 24 hours after metformin administration. We observed an association between the severity of gastrointestinal side effects and the increase in relative abundance of common gut opportunistic pathogen Escherichia-Shigella spp. One week long treatment with metformin was associated with a significant decrease in the families Peptostreptococcaceae and Clostridiaceae_1 and four genera within these families. Conclusions Our results are in line with previous findings on the capability of metformin to influence gut microbiota. However, for the first time we provide evidence that metformin has an immediate effect on the gut microbiome in humans. It is likely that this effect results from the increase in abundance of opportunistic pathogens and further triggers the occurrence of side effects associated with the observed dysbiosis. An additional randomized controlled trial would be required in order to reach definitive conclusions, as this is an exploratory study without a placebo control arm. Our findings may be further used to create approaches that improve the tolerability of metformin.