Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Davinia Pla is active.

Publication


Featured researches published by Davinia Pla.


Proceedings of the National Academy of Sciences of the United States of America | 2013

The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system

Freek J. Vonk; Nicholas R. Casewell; Christiaan V. Henkel; Alysha Heimberg; Hans J. Jansen; Ryan J.R. McCleary; Harald Kerkkamp; Rutger A. Vos; Isabel Guerreiro; Juan J. Calvete; Wolfgang Wüster; Anthony E. Woods; Jessica M. Logan; Robert A. Harrison; Todd A. Castoe; A. P. Jason de Koning; David D. Pollock; Mark Yandell; Diego Calderon; Camila Renjifo; Rachel B. Currier; David Salgado; Davinia Pla; Libia Sanz; Asad S. Hyder; José M. C. Ribeiro; Jan W. Arntzen; Guido van den Thillart; Marten Boetzer; Walter Pirovano

Significance Snake venoms are toxic protein cocktails used for prey capture. To investigate the evolution of these complex biological weapon systems, we sequenced the genome of a venomous snake, the king cobra, and assessed the composition of venom gland expressed genes, small RNAs, and secreted venom proteins. We show that regulatory components of the venom secretory system may have evolved from a pancreatic origin and that venom toxin genes were co-opted by distinct genomic mechanisms. After co-option, toxin genes important for prey capture have massively expanded by gene duplication and evolved under positive selection, resulting in protein neofunctionalization. This diverse and dramatic venom-related genomic response seemingly occurs in response to a coevolutionary arms race between venomous snakes and their prey. Snakes are limbless predators, and many species use venom to help overpower relatively large, agile prey. Snake venoms are complex protein mixtures encoded by several multilocus gene families that function synergistically to cause incapacitation. To examine venom evolution, we sequenced and interrogated the genome of a venomous snake, the king cobra (Ophiophagus hannah), and compared it, together with our unique transcriptome, microRNA, and proteome datasets from this species, with data from other vertebrates. In contrast to the platypus, the only other venomous vertebrate with a sequenced genome, we find that snake toxin genes evolve through several distinct co-option mechanisms and exhibit surprisingly variable levels of gene duplication and directional selection that correlate with their functional importance in prey capture. The enigmatic accessory venom gland shows a very different pattern of toxin gene expression from the main venom gland and seems to have recruited toxin-like lectin genes repeatedly for new nontoxic functions. In addition, tissue-specific microRNA analyses suggested the co-option of core genetic regulatory components of the venom secretory system from a pancreatic origin. Although the king cobra is limbless, we recovered coding sequences for all Hox genes involved in amniote limb development, with the exception of Hoxd12. Our results provide a unique view of the origin and evolution of snake venom and reveal multiple genome-level adaptive responses to natural selection in this complex biological weapon system. More generally, they provide insight into mechanisms of protein evolution under strong selection.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Medically important differences in snake venom composition are dictated by distinct postgenomic mechanisms

Nicholas R. Casewell; Simon C. Wagstaff; Wolfgang Wüster; Darren A. N. Cook; Fiona Bolton; Sarah I. King; Davinia Pla; Libia Sanz; Juan J. Calvete; Robert A. Harrison

Significance The toxic composition of snake venom varies between species. Such variation can have major medical implications for the treatment of human snakebite victims. Venom variation is largely attributed to differences in toxin-encoding genes present in the genome or venom gland of snakes. Here, we demonstrate that mechanisms affecting the transcription, translation, and posttranslational modification of toxins also significantly contribute to the diversity of venom protein composition. Venom variation observed between related snake species is therefore the result of a complex interaction between a variety of genetic and postgenomic factors acting on toxin genes. Ultimately, this variation results in significant differences in venom-induced pathology and lethality and can undermine the efficacy of antivenom therapies used to treat human snakebite victims. Variation in venom composition is a ubiquitous phenomenon in snakes and occurs both interspecifically and intraspecifically. Venom variation can have severe outcomes for snakebite victims by rendering the specific antibodies found in antivenoms ineffective against heterologous toxins found in different venoms. The rapid evolutionary expansion of different toxin-encoding gene families in different snake lineages is widely perceived as the main cause of venom variation. However, this view is simplistic and disregards the understudied influence that processes acting on gene transcription and translation may have on the production of the venom proteome. Here, we assess the venom composition of six related viperid snakes and compare interspecific changes in the number of toxin genes, their transcription in the venom gland, and their translation into proteins secreted in venom. Our results reveal that multiple levels of regulation are responsible for generating variation in venom composition between related snake species. We demonstrate that differential levels of toxin transcription, translation, and their posttranslational modification have a substantial impact upon the resulting venom protein mixture. Notably, these processes act to varying extents on different toxin paralogs found in different snakes and are therefore likely to be as important as ancestral gene duplication events for generating compositionally distinct venom proteomes. Our results suggest that these processes may also contribute to altering the toxicity of snake venoms, and we demonstrate how this variability can undermine the treatment of a neglected tropical disease, snakebite.


Journal of Proteomics | 2016

Combined venomics, venom gland transcriptomics, bioactivities, and antivenomics of two Bothrops jararaca populations from geographic isolated regions within the Brazilian Atlantic rainforest.

Larissa Gonçalves-Machado; Davinia Pla; Libia Sanz; Roberta Jeane Bezerra Jorge; Moema Leitão-de-Araujo; Maria Lúcia Machado Alves; Diego Janisch Alvares; Joari De Miranda; Jenifer Nowatzki; Karen de Morais-Zani; Wilson Fernandes; Anita Mitico Tanaka-Azevedo; Julián Fernández; Russolina B. Zingali; José María Gutiérrez; Carlos Corrêa-Netto; Juan J. Calvete

Bothrops jararaca is a slender and semi-arboreal medically relevant pit viper species endemic to tropical and subtropical forests in southern Brazil, Paraguay, and northern Argentina (Misiones). Within its geographic range, it is often abundant and is an important cause of snakebite. Although no subspecies are currently recognized, geographic analyses have revealed the existence of two well-supported B. jararaca clades that diverged during the Pliocene ~3.8Mya and currently display a southeastern (SE) and a southern (S) Atlantic rainforest (Mata Atlântica) distribution. The spectrum, geographic variability, and ontogenetic changes of the venom proteomes of snakes from these two B. jararaca phylogroups were investigated applying a combined venom gland transcriptomic and venomic analysis. Comparisons of the venom proteomes and transcriptomes of B. jararaca from the SE and S geographic regions revealed notable interpopulational variability that may be due to the different levels of population-specific transcriptional regulation, including, in the case of the southern population, a marked ontogenetic venom compositional change involving the upregulation of the myotoxic PLA2 homolog, bothropstoxin-I. This population-specific marker can be used to estimate the proportion of venom from the southern population present in the B. jararaca venom pool used for the Brazilian soro antibotrópico (SAB) antivenom production. On the other hand, the southeastern population-specific D49-PLA2 molecules, BinTX-I and BinTX-II, lend support to the notion that the mainland ancestor of Bothrops insularis was originated within the same population that gave rise to the current SE B. jararaca phylogroup, and that this insular species endemic to Queimada Grande Island (Brazil) expresses a pedomorphic venom phenotype. Mirroring their compositional divergence, the two geographic B. jararaca venom pools showed distinct bioactivity profiles. However, the SAB antivenom manufactured in Vital Brazil Institute neutralized the lethal effect of both venoms to a similar extent. In addition, immobilized SAB antivenom immunocaptured most of the venom components of the venoms of both B. jararaca populations, but did not show immunoreactivity against vasoactive peptides. The Costa Rican bothropic-crotalic-lachesic (BCL) antivenom showed the same lack of reactivity against vasoactive peptides but, in addition, was less efficient immunocapturing PI- and PIII-SVMPs from the SE venom, and bothropstoxin-I, a CRISP molecule, and a D49-PLA2 from the venom of the southern B. jararaca phylogroup. The remarkable paraspecificity exhibited by the Brazilian and the Costa Rican antivenoms indicates large immunoreactive epitope conservation across the natural history of Bothrops, a genus that has its roots in the middle Miocene. This article is part of a Special Issue entitled: Omics Evolutionary Ecolog.


Journal of Proteomics | 2015

Comparative venomics of the Prairie Rattlesnake (Crotalus viridis viridis) from Colorado: Identification of a novel pattern of ontogenetic changes in venom composition and assessment of the immunoreactivity of the commercial antivenom CroFab®.

Anthony J. Saviola; Davinia Pla; Libia Sanz; Todd A. Castoe; Juan J. Calvete; Stephen P. Mackessy

UNLABELLED Here we describe and compare the venomic and antivenomic characteristics of both neonate and adult Prairie Rattlesnake (Crotalus viridis viridis) venoms. Although both neonate and adult venoms contain unique components, similarities among protein family content were seen. Both neonate and adult venoms consisted of myotoxin, bradykinin-potentiating peptide (BPP), phospholipase A2 (PLA2), Zn(2+)-dependent metalloproteinase (SVMP), serine proteinase, L-amino acid oxidase (LAAO), cysteine-rich secretory protein (CRISP) and disintegrin families. Quantitative differences, however, were observed, with venoms of adults containing significantly higher concentrations of the non-enzymatic toxic compounds and venoms of neonates containing higher concentrations of pre-digestive enzymatic proteins such as SVMPs. To assess the relevance of this venom variation in the context of snakebite and snakebite treatment, we tested the efficacy of the common antivenom CroFab® for recognition of both adult and neonate venoms in vitro. This comparison revealed that many of the major protein families (SVMPs, CRISP, PLA2, serine proteases, and LAAO) in both neonate and adult venoms were immunodepleted by the antivenom, whereas myotoxins, one of the major toxic components of C. v. viridis venom, in addition to many of the small peptides, were not efficiently depleted by CroFab®. These results therefore provide a comprehensive catalog of the venom compounds present in C. v. viridis venom and new molecular insight into the potential efficacy of CroFab® against human envenomations by one of the most widely distributed rattlesnake species in North America. BIOLOGICAL SIGNIFICANCE Comparative proteomic analysis of venoms of neonate and adult Prairie Rattlesnake (Crotalus viridis viridis) from a discrete population in Colorado revealed a novel pattern of ontogenetic shifts in toxin composition for viperid snakes. The observed stage-dependent decrease of the relative content of disintegrins, catalytically active D49-PLA2s, L-amino acid oxidase, and SVMPs, and the concomitant increase of the relative abundance of paralytic small basic myotoxins and ohanin-like toxin, and hemostasis-disrupting serine proteinases, may represent an age-dependent strategy for securing prey and avoiding injury as the snake switches from small ectothermic prey and newborn rodents to larger endothermic prey. Such age-dependent shifts in venom composition may be relevant for antivenom efficacy and treatment of snakebite. However, applying a second-generation antivenomics approach, we show that CroFab®, developed against venom of three Crotalus and one Agkistrodon species, efficiently immunodepleted many, but not all, of the major compounds present in neonate and adult C. v. viridis venoms.


Toxins | 2014

Omics Meets Biology: Application to the Design and Preclinical Assessment of Antivenoms

Juan J. Calvete; Libia Sanz; Davinia Pla; Bruno Lomonte; José María Gutiérrez

Snakebite envenoming represents a neglected tropical disease that has a heavy public health impact worldwide, mostly affecting poor people involved in agricultural activities in Africa, Asia, Latin America and Oceania. A key issue that complicates the treatment of snakebite envenomings is the poor availability of the only validated treatment for this disease, antivenoms. Antivenoms can be an efficacious treatment for snakebite envenoming, provided they are safe, effective, affordable, accessible and administered appropriately. The shortage of antivenoms in various regions, particularly in Sub-Saharan Africa and some parts of Asia, can be significantly alleviated by optimizing the use of current antivenoms and by the generation of novel polyspecific antivenoms having a wide spectrum of efficacy. Complementing preclinical testing of antivenom efficacy using in vivo and in vitro functional neutralization assays, developments in venomics and antivenomics are likely to revolutionize the design and preclinical assessment of antivenoms by being able to test new antivenom preparations and to predict their paraspecific neutralization to the level of species-specific toxins.


Journal of Proteomics | 2013

Snake venomics of Lachesis muta rhombeata and genus-wide antivenomics assessment of the paraspecific immunoreactivity of two antivenoms evidence the high compositional and immunological conservation across Lachesis

Davinia Pla; Libia Sanz; Pedro Molina-Sánchez; Virginia Zorita; Marvin Madrigal; Marietta Flores-Díaz; Alberto Alape-Girón; Vitelbina Núñez; Vicente Andrés; José María Gutiérrez; Juan J. Calvete

UNLABELLED We report the proteomic analysis of the Atlantic bushmaster, Lachesis muta rhombeata, from Brazil. Along with previous characterization of the venom proteomes of L. stenophrys (Costa Rica), L. melanocephala (Costa Rica), L. acrochorda (Colombia), and L. muta muta (Bolivia), the present study provides the first overview of the composition and distribution of venom proteins across this wide-ranging genus, and highlights the remarkable similar compositional and pharmacological profiles across Lachesis venoms. The paraspecificity of two antivenoms, produced at Instituto Vital Brazil (Brazil) and Instituto Clodomiro Picado (Costa Rica) using different conspecific taxa in the immunization mixtures, was assessed using genus-wide comparative antivenomics. This study confirms that the proteomic similarity among Lachesis sp. venoms is mirrored in their high immunological conservation across the genus. The clinical and therapeutic consequences of genus-wide venomics and antivenomics investigations of Lachesis venoms are discussed. BIOLOGICAL SIGNIFICANCE The proteomics characterization of L. m. rhombeata venom completes the overview of Lachesis venom proteomes and confirms the remarkable toxin profile conservation across the five clades of this wide-ranging genus. Genus-wide antivenomics showed that two antivenoms, produced against L. stenophrys or L. m. rhombeata, exhibit paraspecificity towards all other congeneric venoms. Our venomics study shows that, despite the broad geographic distribution of the genus, monospecific antivenoms may achieve clinical coverage for any Lachesis sp. envenoming.


Expert Review of Proteomics | 2015

Constructing comprehensive venom proteome reference maps for integrative venomics

Susann Eichberg; Libia Sanz; Juan J. Calvete; Davinia Pla

Objective: Understanding the molecular basis of complex adaptive traits, such as snake venom, demands qualitative and quantitative comparisons of the temporal and spatial patterns of venom variation. Here, we assessed the proof–of-concept that locus-resolved reference venom proteome maps can be achieved through efficient pre-MS venom proteome decomplexation, peptide-centric MS/MS analysis and species-specific database searching. Methods: Venom proteome components were fractionated and quantified by RP-HPLC, SDS-PAGE and 2DE prior to LC-MS/MS matching against a species-specific transcriptomic dataset. Results: Combination of RP-HPLC/SDS-PAGE and 2DE followed by LC-MS/MS showed the existence of ∼178–180 venom protein species generated from ∼48 unique transcripts. Conclusions: Our results underscore that if sufficient pre-MS and MS efforts are applied, comprehensive venom maps can be achieved. And – equally important – dissociating the venom decomplexing steps from the protein identification process represents the key to achieving a quantitative and locus-resolved insight of the venom proteome.


Frontiers in Bioscience | 2011

A-type lamins and Hutchinson-Gilford progeria syndrome: pathogenesis and therapy

José M. González; Davinia Pla; Dolores Pérez-Sala; Vicente Andrés

Lamin A and lamin C (A-type lamins, both encoded by the LMNA gene) are major components of the mammalian nuclear lamina, a complex proteinaceous structure that acts as a scaffold for protein complexes that regulate nuclear structure and function. Abnormal accumulation of farnesylated-progerin, a mutant form of prelamin A, plays a key role in the pathogenesis of the Hutchinson-Gilford progeria syndrome (HGPS), a devastating disorder that causes the death of affected children at an average age of 13.5 years, predominantly from premature atherosclerosis and myocardial infarction or stroke. Remarkably, progerin is also present in normal cells and appears to progressively accumulate during aging of non-HGPS cells. Therefore, understanding how this mutant form of lamin A provokes HGPS may shed significant insight into physiological aging. In this review, we discuss recent advances into the pathogenic mechanisms underlying HGPS, the main murine models of the disease, and the therapeutic strategies developed in cellular and animal models with the aim of reducing the accumulation of farnesylated-progerin, as well as their use in clinical trials of HGPS.


Journal of Proteomics | 2015

Venomics and antivenomics of Bothrops erythromelas from five geographic populations within the Caatinga ecoregion of northeastern Brazil

Roberta Jeane Bezerra Jorge; Helena Serra Azul Monteiro; Larissa Gonçalves-Machado; M.C. Guarnieri; Rafael Matos Ximenes; Diva Maria Borges-Nojosa; Karla P. de O. Luna; Russolina B. Zingali; Carlos Corrêa-Netto; José María Gutiérrez; Libia Sanz; Juan J. Calvete; Davinia Pla

The Caatinga lancehead, Bothrops erythromelas, is a medically relevant species, responsible for most of the snakebite accidents in most parts of its distribution range in northeastern Brazil. The spectrum and geographic variability of its venom toxins were investigated applying a venomics approach to venom pools from five geographic areas within the Caatinga ecoregion. Despite its wide habitat, populations of B. erythromelas from Ceará, Pernambuco, Juazeiro, Paraiba, and Ilha de Itaparica exhibit highly conserved venom proteomes. Mirroring their compositional conservation, the five geographic venom pools also showed qualitatively and quantitatively overlapping antivenomic profiles against antivenoms generated in Vital Brazil (BR) and Clodomiro Picado (CR) Institutes, using different venoms in the immunization mixtures. The paraspecificity exhibited by the Brazilian SAB and the Costa Rican BCL antivenoms against venom toxins from B. erythromelas indicates large immunoreactive epitope conservation across genus Bothrops during the last ~14 million years, thus offering promise for the possibility of generating a broad-spectrum bothropic antivenom. Biological Significance Accidental snakebite envenomings represent an important public health hazard in Brazil. Ninety per cent of the yearly estimated 20-30,000 snakebite accidents are caused by species of the Bothrops genus. Bothrops erythromelas, a small, moderately stocky terrestrial venomous snake, is responsible for most of the snakebite accidents in its broad distribution range in the Caatinga, a large ecoregion in northeastern Brazil. To gain a deeper insight into the spectrum of medically important toxins present in the venom of the Caatinga lancehead, we applied a venomics approach to define the proteome and geographic variability of adult B. erythromelas venoms from five geographic regions. Although intraspecific compositional variation between venoms among specimens from different geographic regions has long been appreciated by herpetologists and toxinologists as a general feature of highly adaptable and widely distributed snake species, the five B. erythromelas populations investigated exhibit highly conserved venom proteomes. The overall toxin profile of the Caatinga lanceheads venom explains the local and systemic effects observed in envenomations by B. erythromelas. The five geographic venom pools sampled also showed qualitatively and quantitatively overlapping antivenomic profiles against antivenoms generated using different bothropic venoms in the immunization mixtures. The large immunoreactive epitope conservation across genus Bothrops offers promise for the generation of a broad-spectrum bothropic antivenom.


Journal of Proteomics | 2012

Snake venomics of Macrovipera mauritanica from Morocco, and assessment of the para-specific immunoreactivity of an experimental monospecific and a commercial antivenoms.

Bouchra Makran; Laila Fahmi; Davinia Pla; Libia Sanz; Naoual Oukkache; Mustapha Lkhider; Noreddine Ghalim; Juan J. Calvete

Proteomic analysis of the venom of the medically relevant snake Macrovipera mauritanica from Morocco revealed a complex proteome composed of at least 45 toxins from 9 protein families targeting the hemostatic system of the prey or victim. The toxin profile of Moroccan M. mauritanica displays great similarity, but also worth noting departures, with the previously reported venom proteome of M. lebetina from Tunisia. Despite fine compositional differences between these Macrovipera taxa, their overall venom phenotypes explain the clinical picture observed in M. mauritanica and M. lebetina envenomings. However, M. mauritanica venom also contains significant amounts of orphan molecules whose presence in the venom seems to be difficult to rationalize in the context of a predator-prey arms race. The paraspecific immunoreactivity of an experimental monospecific (M. mauritanica) antivenom and a commercial bivalent antivenom, anti-C. cerastes and anti-M. lebetina, against the venoms of Moroccan M. mauritanica and Tunisian M. lebetina, was also investigated through an affinity chromatography-based antivenomics approach. Both antivenoms very efficiently immunodepleted homologous venom toxins and displayed a high degree of paraspecificity, suggesting the clinical utility of the two antivenoms for treating bites of both M. mauritanica or M. lebetina.

Collaboration


Dive into the Davinia Pla's collaboration.

Top Co-Authors

Avatar

Juan J. Calvete

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar

Libia Sanz

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruno Lomonte

University of Costa Rica

View shared research outputs
Top Co-Authors

Avatar

Yania Rodríguez

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert A. Harrison

Liverpool School of Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar

Vicente Andrés

Centro Nacional de Investigaciones Cardiovasculares

View shared research outputs
Top Co-Authors

Avatar

Mahmood Sasa

University of Costa Rica

View shared research outputs
Top Co-Authors

Avatar

María Herrera

University of Costa Rica

View shared research outputs
Researchain Logo
Decentralizing Knowledge