Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Davis Jose is active.

Publication


Featured researches published by Davis Jose.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Spectroscopic studies of position-specific DNA “breathing” fluctuations at replication forks and primer-template junctions

Davis Jose; Kausiki Datta; Neil P. Johnson; Peter H. von Hippel

Junctions between ssDNA and dsDNA sequences are important in many cellular processes, including DNA replication, transcription, recombination, and repair. Significant transient conformational fluctuations (“DNA breathing”) can occur at these ssDNA–dsDNA junctions. The involvement of such breathing in the mechanisms of macromolecular complexes that operate at these loci is not well understood, in part because these fluctuations have been difficult to measure in a position-specific manner. To address this issue we constructed forked or primer-template DNA constructs with 1 or 2 adjacent 2-aminopurine (2-AP) nucleotide residues (adenine analogues) placed at specific positions on both sides of the ssDNA–dsDNA junction. Unlike canonical DNA bases, 2-AP absorbs, fluoresces, and displays CD spectra at wavelengths >300 nm, where other nucleic acid and protein components are transparent. We used CD and fluorescence spectra and acrylamide quenching of these probes to monitor the extent and nature of DNA breathing of A-T base pairs at specific positions around the ssDNA–dsDNA junction. As expected, spectroscopically measurable unwinding penetrates ≈2 bp into the duplex region of these junctions under physiological conditions for the constructs examined. Surprisingly, we found that 2-AP bases at ssDNA sites directly adjacent to ssDNA–dsDNA junctions are significantly more unstacked than those at more distant ssDNA positions. These local and transient DNA conformations on both sides of ssDNA–dsDNA junctions may serve as specific interaction targets for enzymes that manipulate DNA in the processes of gene expression.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Single-molecule FRET and linear dichroism studies of DNA breathing and helicase binding at replication fork junctions

Carey Phelps; Wonbae Lee; Davis Jose; Peter H. von Hippel; Andrew H. Marcus

Significance Unique single-molecule fluorescence techniques were used to monitor DNA “breathing” at and near the junctions of model DNA replication forks on biologically relevant microsecond-to-millisecond time scales. Experiments performed in the absence and presence of helicase complexes addressed the role of these fluctuations in helicase function during DNA replication. These studies simultaneously monitored single-molecule Förster resonance energy transfer and single-molecule fluorescence linear dichroism of “internal” Cy3/Cy5 labels placed rigidly into the DNA backbones at positions near the fork junction. Our results showed significant breathing at the fork junction that was greatly augmented by the presence of weakly bound helicase, followed by still larger fluctuations and strand separation after full duplex DNA unwinding by the complete tightly bound and processive helicase complex. DNA “breathing” is a thermally driven process in which base-paired DNA sequences transiently adopt local conformations that depart from their most stable structures. Polymerases and other proteins of genome expression require access to single-stranded DNA coding templates located in the double-stranded DNA “interior,” and it is likely that fluctuations of the sugar–phosphate backbones of dsDNA that result in mechanistically useful local base pair opening reactions can be exploited by such DNA regulatory proteins. Such motions are difficult to observe in bulk measurements, both because they are infrequent and because they often occur on microsecond time scales that are not easy to access experimentally. We report single-molecule fluorescence experiments with polarized light, in which tens-of-microseconds rotational motions of internally labeled iCy3/iCy5 donor–acceptor Förster resonance energy transfer fluorophore pairs that have been rigidly inserted into the backbones of replication fork constructs are simultaneously detected using single-molecule Förster resonance energy transfer and single-molecule fluorescence-detected linear dichroism signals. Our results reveal significant local motions in the ∼100-μs range, a reasonable time scale for DNA breathing fluctuations of potential relevance for DNA–protein interactions. Moreover, we show that both the magnitudes and the relaxation times of these backbone breathing fluctuations are significantly perturbed by interactions of the fork construct with a nonprocessive, weakly binding bacteriophage T4-coded helicase hexamer initiation complex, suggesting that these motions may play a fundamental role in the initial binding, assembly, and function of the processive helicase–primase (primosome) component of the bacteriophage T4-coded DNA replication complex.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Breathing fluctuations in position-specific DNA base pairs are involved in regulating helicase movement into the replication fork

Davis Jose; Steven E. Weitzel; Peter H. von Hippel

We previously used changes in the near-UV circular dichroism and fluorescence spectra of DNA base analogue probes placed site specifically to show that the first three base pairs at the fork junction in model replication fork constructs are significantly opened by “breathing” fluctuations under physiological conditions. Here, we use these probes to provide mechanistic snapshots of the initial interactions of the DNA fork with a tight-binding replication helicase in solution. The primosome helicase of bacteriophage T4 was assembled from six (gp41) helicase subunits, one (gp61) primase subunit, and nonhydrolyzable GTPγS. When bound to a DNA replication fork construct this complex advances one base pair into the duplex portion of the fork and forms a stably bound helicase “initiation complex.” Replacement of GTPγS with GTP permits the completion of the helicase-driven unwinding process. Our spectroscopic probes show that the primosome in this stable helicase initiation complex binds the DNA of the fork primarily via backbone contacts and holds the first complementary base pair of the fork in an open conformation, whereas the second, third, and fourth base pairs of the duplex show essentially the breathing behavior that previously characterized the first three base pairs of the free fork. These spectral changes, together with dynamic fluorescence quenching results, are consistent with a primosome-binding model in which the lagging DNA strand passes through the central hole of the hexagonal helicase, the leading strand binds to the “outside” surfaces of subunits of the helicase hexamer, and the single primase subunit interacts with both strands.


Nucleic Acids Research | 2009

DNA models of trinucleotide frameshift deletions: the formation of loops and bulges at the primer–template junction

Walter A. Baase; Davis Jose; Benjamin C. Ponedel; Peter H. von Hippel; Neil P. Johnson

Although mechanisms of single-nucleotide residue deletion have been investigated, processes involved in the loss of longer nucleotide sequences during DNA replication are poorly understood. Previous reports have shown that in vitro replication of a 3′-TGC TGC template sequence can result in the deletion of one 3′-TGC. We have used low-energy circular dichroism (CD) and fluorescence spectroscopy to investigate the conformations and stabilities of DNA models of the replication intermediates that may be implicated in this frameshift. Pyrrolocytosine or 2-aminopurine residues, site-specifically substituted for cytosine or adenine in the vicinity of extruded base sequences, were used as spectroscopic probes to examine local DNA conformations. An equilibrium mixture of four hybridization conformations was observed when template bases looped-out as a bulge, i.e. a structure flanked on both sides by duplex DNA. In contrast, a single-loop structure with an unusual unstacked DNA conformation at its downstream edge was observed when the extruded bases were positioned at the primer–template junction, showing that misalignments can be modified by neighboring DNA secondary structure. These results must be taken into account in considering the genetic and biochemical mechanisms of frameshift mutagenesis in polymerase-driven DNA replication.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Assembly and subunit stoichiometry of the functional helicase-primase (primosome) complex of bacteriophage T4

Davis Jose; Steven E. Weitzel; Debra H. Jing; Peter H. von Hippel

Physical biochemical techniques are used to establish the structure, subunit stoichiometry, and assembly pathway of the primosome complex of the bacteriophage T4 DNA replication system. Analytical ultracentrifugation and fluorescence anisotropy methods show that the functional T4 primosome consists of six gp41 helicase subunits that assemble into a hexagon, driven by the binding of six NTPs (or six nonhydrolyzable GTPγS analogues) that are located at and stabilize the intersubunit interfaces, together with a single tightly bound gp61 primase subunit. Assembling the components of the primosome onto a model DNA replication fork is a multistep process, but equilibrium cannot be reached along all mixing pathways. Producing a functional complex requires that the helicase hexamer be assembled in the presence of the DNA replication fork construct prior to the addition of the primase to avoid the formation of metastable DNA-protein aggregates. The gp41 helicase hexamer binds weakly to fork DNA in the absence of primase, but forms a much more stable primosome complex that expresses full and functional helicase (and primase) activities when bound to a gp61 primase subunit at a helicase:primase subunit ratio of 6∶1. The presence of additional primase subunits does not change the molecular mass or helicase activity of the primosome, but significantly inhibits its primase activity. We develop both an assembly pathway and a minimal mechanistic model for the structure and function of the T4 primosome that are likely to be relevant to the assembly and function of the replication primosome subassemblies of higher organisms as well.


Nucleic Acids Research | 2015

Mapping the interactions of the single-stranded DNA binding protein of bacteriophage T4 (gp32) with DNA lattices at single nucleotide resolution: gp32 monomer binding

Davis Jose; Steven E. Weitzel; Walter A. Baase; Peter H. von Hippel

Combining biophysical measurements on T4 bacteriophage replication complexes with detailed structural information can illuminate the molecular mechanisms of these ‘macromolecular machines’. Here we use the low energy circular dichroism (CD) and fluorescent properties of site-specifically introduced base analogues to map and quantify the equilibrium binding interactions of short (8 nts) ssDNA oligomers with gp32 monomers at single nucleotide resolution. We show that single gp32 molecules interact most directly and specifically near the 3′-end of these ssDNA oligomers, thus defining the polarity of gp32 binding with respect to the ssDNA lattice, and that only 2–3 nts are directly involved in this tight binding interaction. The loss of exciton coupling in the CD spectra of dimer 2-AP (2-aminopurine) probes at various positions in the ssDNA constructs, together with increases in fluorescence intensity, suggest that gp32 binding directly extends the sugar-phosphate backbone of this ssDNA oligomer, particularly at the 3′-end and facilitates base unstacking along the entire 8-mer lattice. These results provide a model (and ‘DNA map’) for the isolated gp32 binding to ssDNA targets, which serves as the nucleation step for the cooperative binding that occurs at transiently exposed ssDNA sequences within the functioning T4 DNA replication complex.


Nucleic Acids Research | 2015

Mapping the interactions of the single-stranded DNA binding protein of bacteriophage T4 (gp32) with DNA lattices at single nucleotide resolution: polynucleotide binding and cooperativity

Davis Jose; Steven E. Weitzel; Walter A. Baase; Miya M. Michael; Peter H. von Hippel

We here use our site-specific base analog mapping approach to study the interactions and binding equilibria of cooperatively-bound clusters of the single-stranded DNA binding protein (gp32) of the T4 DNA replication complex with longer ssDNA (and dsDNA) lattices. We show that in cooperatively bound clusters the binding free energy appears to be equi-partitioned between the gp32 monomers of the cluster, so that all bind to the ssDNA lattice with comparable affinity, but also that the outer domains of the gp32 monomers at the ends of the cluster can fluctuate on and off the lattice and that the clusters of gp32 monomers can slide along the ssDNA. We also show that at very low binding densities gp32 monomers bind to the ssDNA lattice at random, but that cooperatively bound gp32 clusters bind preferentially at the 5′-end of the ssDNA lattice. We use these results and the gp32 monomer-binding results of the companion paper to propose a detailed model for how gp32 might bind to and interact with ssDNA lattices in its various binding modes, and also consider how these clusters might interact with other components of the T4 DNA replication complex.


Nucleic Acids Research | 2016

Single-molecule FRET studies of the cooperative and non-cooperative binding kinetics of the bacteriophage T4 single-stranded DNA binding protein (gp32) to ssDNA lattices at replication fork junctions

Wonbae Lee; John P. Gillies; Davis Jose; Brett Israels; Peter H. von Hippel; Andrew H. Marcus

Gene 32 protein (gp32) is the single-stranded (ss) DNA binding protein of the bacteriophage T4. It binds transiently and cooperatively to ssDNA sequences exposed during the DNA replication process and regulates the interactions of the other sub-assemblies of the replication complex during the replication cycle. We here use single-molecule FRET techniques to build on previous thermodynamic studies of gp32 binding to initiate studies of the dynamics of the isolated and cooperative binding of gp32 molecules within the replication complex. DNA primer/template (p/t) constructs are used as models to determine the effects of ssDNA lattice length, gp32 concentration, salt concentration, binding cooperativity and binding polarity at p/t junctions. Hidden Markov models (HMMs) and transition density plots (TDPs) are used to characterize the dynamics of the multi-step assembly pathway of gp32 at p/t junctions of differing polarity, and show that isolated gp32 molecules bind to their ssDNA targets weakly and dissociate quickly, while cooperatively bound dimeric or trimeric clusters of gp32 bind much more tightly, can ‘slide’ on ssDNA sequences, and exhibit binding dynamics that depend on p/t junction polarities. The potential relationships of these binding dynamics to interactions with other components of the T4 DNA replication complex are discussed.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Using microsecond single-molecule FRET to determine the assembly pathways of T4 ssDNA binding protein onto model DNA replication forks

Carey Phelps; Brett Israels; Davis Jose; Morgan C. Marsh; Peter H. von Hippel; Andrew H. Marcus

Significance A microsecond-resolved single-molecule FRET method was used to monitor the binding and unbinding of the ssDNA binding protein (gene product 32) of the T4 bacteriophage replication complex to biologically relevant primer-template DNA constructs. A unique multitime correlation function analysis was applied to the resulting sparse data, which permitted the investigation of the kinetics and mechanisms of noncooperative and cooperative protein binding, unbinding, and “sliding.” Our results indicate that noncooperatively bound monomer proteins dissociate on the timescale of tens of milliseconds, which is consistent with the known rate of nucleotide addition during DNA replication. The rapid dissociation of the monomer suggests that sliding is a much more likely mechanism for translocation of cooperatively bound clusters of indeterminate size. DNA replication is a core biological process that occurs in prokaryotic cells at high speeds (∼1 nucleotide residue added per millisecond) and with high fidelity (fewer than one misincorporation event per 107 nucleotide additions). The ssDNA binding protein [gene product 32 (gp32)] of the T4 bacteriophage is a central integrating component of the replication complex that must continuously bind to and unbind from transiently exposed template strands during DNA synthesis. We here report microsecond single-molecule FRET (smFRET) measurements on Cy3/Cy5-labeled primer-template (p/t) DNA constructs in the presence of gp32. These measurements probe the distance between Cy3/Cy5 fluorophores that label the ends of a short (15-nt) segment of ssDNA attached to a model p/t DNA construct and permit us to track the stochastic interconversion between various protein bound and unbound states. The length of the 15-nt ssDNA lattice is sufficient to accommodate up to two cooperatively bound gp32 proteins in either of two positions. We apply a unique multipoint time correlation function analysis to the microsecond-resolved smFRET data obtained to determine and compare the kinetics of various possible reaction pathways for the assembly of cooperatively bound gp32 protein onto ssDNA sequences located at the replication fork. The results of our analysis reveal the presence and translocation mechanisms of short-lived intermediate bound states that are likely to play a critical role in the assembly mechanisms of ssDNA binding proteins at replication forks and other ss duplex junctions.


Biochemistry | 2013

A single-molecule view of the assembly pathway, subunit stoichiometry, and unwinding activity of the bacteriophage T4 primosome (helicase-primase) complex.

Wonbae Lee; Davis Jose; Carey Phelps; Andrew H. Marcus; Peter H. von Hippel

Collaboration


Dive into the Davis Jose's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Neil P. Johnson

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge