Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Davoodbasha MubarakAli is active.

Publication


Featured researches published by Davoodbasha MubarakAli.


Colloids and Surfaces B: Biointerfaces | 2011

PLANT EXTRACT MEDIATED SYNTHESIS OF SILVER AND GOLD NANOPARTICLES AND ITS ANTIBACTERIAL ACTIVITY AGAINST CLINICALLY ISOLATED PATHOGENS

Davoodbasha MubarakAli; Nooruddin Thajuddin; K. Jeganathan; Muthukumaran Gunasekaran

Biosynthesis of nanoparticles is under exploration is due to wide biomedical applications and research interest in nanotechnology. Bioreduction of silver nitrate (AgNO(3)) and chloroauric acid (HAuCl(4)) for the synthesis of silver and gold nanoparticles respectively with the plant extract, Mentha piperita (Lamiaceae). The plant extract is mixed with AgNO(3) and HAuCl(2), incubated and studied synthesis of nanoparticles using UV-Vis spectroscopy. The nanoparticles were characterized by FTIR, SEM equipped with EDS. The silver nanoparticles synthesized were generally found to be spherical in shape with 90 nm, whereas the synthesized gold nanoparticles were found to be 150 nm. The results showed that the leaf extract of menthol is very good bioreductant for the synthesis of silver and gold nanoparticles and synthesized nanoparticles active against clinically isolated human pathogens, Staphylococcus aureus and Escherichia coli.


Colloids and Surfaces B: Biointerfaces | 2012

Biosynthesis of silver nanoparticles from Tribulus terrestris and its antimicrobial activity: a novel biological approach.

V. Gopinath; Davoodbasha MubarakAli; S. Priyadarshini; N. Meera Priyadharsshini; Nooruddin Thajuddin; P. Velusamy

In the recent decades, increased development of green synthesis of nanoparticles is inevitable because of its incredible applications in all fields of science. There were numerous work have been produced based on the plant and its extract mediated synthesis of nanoparticles, in this present study to explore that the novel approaches for the biosynthesis of silver nanoparticles using plant fruit bodies. The plant, Tribulus terrestris L. fruit bodies are used in this study, where the dried fruit body extract was mixed with silver nitrate in order to synthesis of silver nanoparticles. The active phytochemicals present in the plant were responsible for the quick reduction of silver ion (Ag(+)) to metallic silver nanoparticles (Ag(0)). The reduced silver nanoparticles were characterized by Transmission Electron Microscope (TEM), Atomic Force Microscope (AFM), XRD, FTIR, UV-vis spectroscopy. The spherical shaped silver nanoparticles were observed and it was found to be 16-28 nm range of sizes. The diffraction pattern also confirmed that the higher percentage of silver with fine particles size. The antibacterial property of synthesized nanoparticles was observed by Kirby-Bauer method with clinically isolated multi-drug resistant bacteria such as Streptococcus pyogens, Pseudomonas aeruginosa, Escherichia coli, Bacillus subtilis and Staphylococcus aureus. The plant materials mediated synthesis of silver nanoparticles have comparatively rapid and less expensive and wide application to antibacterial therapy in modern medicine.


Colloids and Surfaces B: Biointerfaces | 2013

Synthesis of anisotropic silver nanoparticles using novel strain, Bacillus flexus and its biomedical application

S. Priyadarshini; V. Gopinath; N. Meera Priyadharsshini; Davoodbasha MubarakAli; P. Velusamy

Synthesis of metallic nanoparticles has attracted by bacterial based production and alternative to physical and chemical approaches. The present work was focused to nominate a bacterial strain for synthesis of potential silver nanoparticles. The target was achieved by screening of 127 isolates from silver mining wastes. A strain designated S-27 found to be a potential candidate for rapid synthesis of silver nanoparticles among tested microorganisms. It was subjected to molecular characterization by 16S rDNA sequence analysis. It was found that S-27 belonging to Bacillus flexus. Synthesis of silver nanoparticles was achieved by addition of culture supernatants with aqueous silver nitrate solution, immediately it turns to brown colour solution showed a peak at 420 nm corresponding to the plasmon absorbance of silver nanoparticles by UV-vis spectroscopy. Various instrumentation techniques, such as AFM, FESEM, XRD and FTIR, were adopted to characterize the synthesized nanoparticles. Anisotropic nanoparticles, such as spherical and triangular shaped nanoparticles, have been synthesized and sizes were found to be 12 and 65 nm, respectively. It was stable in aqueous solution in five months period of storage at room temperature in the dark. Synthesized nanoparticles showed efficacy on antibacterial property against clinically isolated multi-drug resistant (MDR) microorganisms. It is suggested that biogenic synthesis of nanoparticles have wide-application in medicine and physical chemistry and it can produce with eco-friendly, easy downstream processing and rapid scale-up processing.


Colloids and Surfaces B: Biointerfaces | 2013

An investigation on the cytotoxicity and caspase-mediated apoptotic effect of biologically synthesized silver nanoparticles using Podophyllum hexandrum on human cervical carcinoma cells

Murugaraj Jeyaraj; Manoharan Rajesh; Renganathan Arun; Davoodbasha MubarakAli; G. Sathishkumar; Ganeshan Sivanandhan; Gnanajothi Kapil Dev; Markandan Manickavasagam; Kumpati Premkumar; Nooruddin Thajuddin; Andy Ganapathi

Now-a-days synthesis and characterization of silver nanoparticles (AgNPs) through biological entity is quite interesting to employ AgNPs for various biomedical applications in general and treatment of cancer in particular. This paper presents the green synthesis of AgNPs using leaf extract of Podophyllum hexandrum Royle and optimized with various parameters such as pH, temperature, reaction time, volume of extract and metal ion concentration for synthesis of AgNPs. TEM, XRD and FTIR were adopted for characterization. The synthesized nanoparticles were found to be spherical shaped with average size of 14 nm. Effects of AgNPs were analyzed against human cervical carcinoma cells by MTT Assay, quantification of ROS, RT-PCR and western blotting techniques. The overall result indicates that AgNPs can selectively inhibit the cellular mechanism of HeLa by DNA damage and caspase mediated cell death. This biological procedure for synthesis of AgNPs and selective inhibition of cancerous cells gives an alternative avenue to treat human cancer effectively.


Colloids and Surfaces B: Biointerfaces | 2013

Degradation of synthetic dye, Rhodamine B to environmentally non-toxic products using microalgae

E. Baldev; Davoodbasha MubarakAli; A. Ilavarasi; D. Pandiaraj; K.A. Sheik Syed Ishack; Nooruddin Thajuddin

In the present study a potential freshwater microalgae Coelastrella sp. was selected for degradation of synthetic dye, Rhodamine B in batch culture system. Effect of several physico-chemical parameters that influence the decolorization followed by degradation ability was investigated (inoculum concentration, initial dye concentration, temperature and pH) and optimal experimental condition was ascertained. The optimum operating conditions were found to be [Dye]=100 mg l(-1); [temperature]=30°C; with 10% of inoculum at a pH of 8. Under these conditions, a maximum of 80% decolorization of the dye was achieved in 20 days. Peroxidase activity of the isolate was also determined and it was found to be 2.1 μmol min mg(-1) of protein. The actual break down of the dye was confirmed by using various analytical techniques such as GC-MS, TLC, FTIR and UV-vis spectral analysis. Small aliphatic chains, small chain alcohols and ketones were obtained after degradation of Rhodamine B. These are the evidences that showed that microalgae play a vital role on dye degradation to non-toxic products effectively.


Biofouling | 2015

One pot synthesis and anti-biofilm potential of copper nanoparticles (CuNPs) against clinical strains of Pseudomonas aeruginosa

Felix LewisOscar; Davoodbasha MubarakAli; Chari Nithya; Rajendran Priyanka; Venkatraman Gopinath; Naiyf S. Alharbi; Nooruddin Thajuddin

Pseudomonas aeruginosa, an opportunistic pathogen frequently associated with nosocomial infections, is emerging as a serious threat due to its resistance to broad spectrum antimicrobials. The biofilm mode of growth confers resistance to antibiotics and novel anti-biofilm agents are urgently needed. Nanoparticle based treatments and therapies have been of recent interest because of their versatile applications. This study investigates the anti-biofilm activity of copper nanoparticles (CuNPs) synthesized by the one pot method against P. aeruginosa. Standard physical techniques including UV–visible and Fourier transform infrared spectroscopy, X-ray diffraction and transmission electron microscopy were used to characterize the synthesized CuNPs. CuNP treatments at 100 ng ml−1 resulted in a 94, 89 and 92% reduction in biofilm, cell surface hydrophobicity and exopolysaccharides respectively, without bactericidal activity. Evidence of biofilm inhibition was also seen with light and confocal microscope analysis. This study highlights the anti-biofilm potential of CuNPs, which could be utilized as coating agents on surgical devices and medical implants to manage biofilm associated infections.


Colloids and Surfaces B: Biointerfaces | 2013

Gold nanoparticles from Pro and eukaryotic photosynthetic microorganisms—Comparative studies on synthesis and its application on biolabelling

Davoodbasha MubarakAli; J. Arunkumar; K. Harish Nag; K.A. SheikSyedIshack; E. Baldev; D. Pandiaraj; Nooruddin Thajuddin

Today, a material science focuses on the nanoparticles synthesis in general and synthesizing them by biological entity in particular for their marvel production and its remarkable property. In this present study, synthesis of gold nanoparticles using photosynthetic microorganisms such as Coelastrella sp. (eukaryotes) and Phormidium sp. (prokaryotes) were reacted with Chloroauric acid (HAuCl(4)) and bioaccumulation was assessed. Various techniques were adopted for characterization of nanoparticles and compared. It was found to be 25 nm sized nanotriangles and 30 nm sized spherical shaped nanoparticles were synthesized by prokaryotic and eukaryotic microorganisms respectively by TEM analysis. Biogenic gold nanoparticles have potent antioxidant property and the interaction of gold nanoparticles with DNA was evaluated that biogenic nanoparticles were actively bound to DNA in increased concentration. It was revealed that biogenic nanoparticles have wide range of applications depends on the biological entity used. Selection of suitable biological entity is very much important for the production of nanoparticles with desirable shapes and size for the biomedical applications.


Journal of The Saudi Pharmaceutical Society | 2015

Synthesis and characterization of biocompatibility of tenorite nanoparticles and potential property against biofilm formation.

Davoodbasha MubarakAli; Jegatheesan Arunkumar; Pratheesh Pooja; Gopalakrishnan Subramanian; Nooruddin Thajuddin; Naiyf S. Alharbi

Aim is to assess the anti-biofilm property of tenorite nanoparticles and to study their suitability as a possible coating material for medical implants. Tenorite (CuO) nanoparticles were synthesized by the optimized thermal decomposition method and characterized using TEM, XRD, FTIR and UV–Vis analysis. Their influence on biofilm formation of microbes was studied by growing multi drug resistant bacterial strains in the presence or absence of these nanoparticles at various concentrations. The cytotoxicity of nanoparticles on mammalian cells was studied at the corresponding concentrations. The nanoparticles were found to be uniformly dispersed, spherical shaped and <50 nm in size. They showed various degrees of anti-biofilm property against clinically isolated, biofilm forming multi drug resistant microorganisms such as Staphylococcus aureus, Pseudomonas fluorescens, Burkholderia mallei, Klebsiella pneumoniae, and Escherichia coli. Furthermore, Hep-2 cells showed excellent viability at tenorite nanoparticles concentration toxic to microbial growth. These results indicate that tenorite nanoparticles may be ideal candidates for being utilized as coating on medical implants in general and dental implants in particular.


Microbial Pathogenesis | 2018

Synthesis of silver nanoparticles from Bacillus brevis (NCIM 2533) and their antibacterial activity against pathogenic bacteria

Muthupandian Saravanan; Sisir Kumar Barik; Davoodbasha MubarakAli; Periyakaruppan Prakash; Arivalagan Pugazhendhi

The present study is focused on the biological synthesis of silver nanoparticles (AgNPs) from the Bacillus brevis (NCIM 2533) was investigated. The synthesized AgNPs were characterized by various spectroscopic and microscopic techniques and confirmed the AgNPs having the surface Plasmon resonance peak at 420 nm and in the size range of 41-68 nm with spherical in shape by AFM and SEM analysis. It was confirmed and ascertained the presence of bioactive compounds in the AgNPs using TLC and FTIR. The In-vitro antibacterial activity of AgNPs showaed potential antibacterial property against multi-drug resistant pathogens such as Salmonella typhi and Staphylococcus aureus. The biosynthesized AgNPs could be utilized as antimicrobial agents for effective disease management.


International Journal of Biotechnology for Wellness Industries | 2014

Facile and Novel Strategy for Methods of Extraction of Biofuel Grade Lipids from Microalgae- an Experimental Report

E. Baldev; Davoodbasha MubarakAli; Masilamani Dhivya; Mahalingam Kanimozhi; Thajuddin Shakena-Fathima; Naiyf S. Alharbi; Chinnathambi Arunachalam; Sulaiman Ali Alharbi; Nooruddin Thajuddin

The structural features of microalgal cell make it too difficult to extract the total lipid content of the cell as such. Thus, the cell disruption before lipid extraction becomes mandatory and has to be cost-effective. In the present study various methods and combination of few methods were adopted for effective extraction in order to choose the most effective cell disruption method for the complete extraction of lipids from a selected indigenous freshwater isolate, Scenedesmus sp. NTEB03. Interestingly, we found that grinding and bead-beating method showed two fold increased lipid productivity (23.2%) than the other methods tested. Biomass and lipid productivity of Scenedesmus sp., was found to be 0.0418 g L -1 d -1 and 4.3 mg L -1 d -1 respectively. Fatty acid profiles revealed that oleic (C18:1) and linoleic acid (C18:2) content being higher in the lipids, which are most appropriate for the biodiesel production. A novel strategy for most effective, simple method for cell disruption in Scenedesmus sp., was grinding/bead-beating, which is the most suitable method for complete extraction of biofuel grade lipids.

Collaboration


Dive into the Davoodbasha MubarakAli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. Baldev

Bharathidasan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge